PCle® 3.0 Compliance Testing

Dan Froelich
Serial Enabling Workgroup Co-Chair
Agenda

- PCIe® Compliance Program Status
- PCIe Compliance Process
- Compliance Test Overview
- PCIe Electrical Tests and Tools
- PCIe Protocol Testing
- Platform BIOS Testing
- PCIe Configuration Tests
- Test Specification ECNs
Compliance Program Overview

- PCI™, PCI-X™, PCIe 1.x compliance testing no longer offered as of Jan 1, 2013
 - PCIe 2.0 compliance testing continues to be offered
- Changes implemented starting with the April 2013 workshop
 - No changes to test cases or pass/fail criteria
 - All PCIECV testing to be done with 3.0 system and PCIECV 1.5.1.9 running on Windows 7
 - All BIOS testing to be run with 3.0 PTC card from April 2013 workshop onwards
 - All Tx electrical testing to be done using Sigtest 3.2
- PCIe 3.0 official integrator’s list testing started in April 2013
PCIe 3.0 Compliance Process

PCI-SIG® Specs Describes Device Requirements
- 3.0 Base and CEM specs

C&I Test Specs Define Test Criteria based on spec requirements
- Test Definitions
- Pass/Fail Criteria

Test H/W & S/W Validates Test Criteria
- Compliance
- Interoperability

Clear Test Output Maps Directly to Test Spec

Workshops
PASS
FAIL

Predictable path to design compliance
Same process as 1.x, 2.x
PCIe 3.0 Compliance Test Overview

- **Physical Layer**
 - 3.0 CLB and CBB fixtures
 - Add receiver and link equalization testing
 - New Sigtest
 - Reference CTLE+DFE
 - Test Channel Embedding
 - New Clock Tool
 - Provides clock phase jitter test to 3.0 base specification
 - PLL Bandwidth

- **Configuration Space**
 - Updated PCIeCV for new fields and capabilities

- **Link & Transaction Layer**
 - Run existing 2.0 tests at 8.0GT/s for 3.0 8GT/s capable devices
 - New tests covering link equalization and other new features

- **Platform Configuration**
 - Run existing tests at 8GT/s
 - New tests for 3.0
Compliance Workshop Overview

- Workshops are usually announced 2 months in advance
 - Workshop registration closes 3 weeks prior for domestic, and 4 weeks prior for international
 - No on-site registration

- Testing is done on devices using the standard CEM form factor
- Device must past pass testing at a workshop in order to be listed on the PCI-SIG Integrators List
 - All required gold suite tests must pass
 - Interoperability testing

- Interoperability testing
 - Opportunity for vendors at compliance workshop to test with each other
 - Goal is to demonstrate interoperability between products
 - 80% passing rate required for eligibility for PCI-SIG Integrators List
 - Demonstrate that the link can train and operate at the highest common link speed supported
 - For 2.0 devices, at 5GT/s if both devices support 5GT/s
 - For 3.0 devices, at 8GT/s if both devices support 8GT/s
Electrical Tests
Motherboard Test Procedure

- CLB 2.0 Standard Test Fixture connected to slot under test
- Lane under test and clock connected through fixture to oscilloscope
- Motherboard under test enters compliance mode
 - Fixture provides features to select different compliance speeds and de-emphasis levels
- Data lane and reference clock sampled simultaneously
 - 25 ps or smaller sample interval. At least 1 million UI.
- Standard Post Processing Analysis Software (Sigtest 3.2)
 - Supports All Common RT Scope Data Formats
 - New template file DUAL_PORT_SYS_CON_250.dat posted for System Height ECN
- Standard Test Procedures For Specific Test Equipment

- Capture waveform on oscilloscope
- Run signal analysis software

Same Basic Motherboard TX Test Setup/Process Used For 1.1 Program
Real-Time Scope, Post Processing Software, Compliance Mode, etc.
New 2.0 CEM Dual Port Method Test Clock and Data Simultaneously
PCIe 2.0 Add-in Card
Electrical Tools

- **Add-in Card Test Procedure**
 - CBB 2.0 Standard Test Fixture with add-in card to test connected
 - Lane under test connected through fixture to oscilloscope
 - Add-in card under test enters compliance mode
 - Fixture provides features to select different compliance speeds and de-emphasis levels
 - Data lane sampled
 - 25 ps or smaller sample interval. At least 1 million UI
 - Standard Post Processing Analysis Software (Sigtest 3.2)
 - Supports all common RT Scope data formats
 - Standard Test Procedures for specific test equipment

- Capture waveform on oscilloscope
- Run signal analysis software

Same Basic AIC TX Test Setup/Process Used For 1.1 Testing
RT Scope, Post Processing Software, Compliance Mode, etc.
PLL Bandwidth Testing

- Required test for 2.0 Integrators List
- Test outline
 - Sinusoidal phase jitter is added to reference clock from 0 to 25 Mhz in small frequency increments
 - Reference clock jitter is calibrated to 43.6 ps under 2.0 spec filter
 - Transmitter jitter is measured at each point
 - 3 dB point and peaking in transmitter response are determined from data
 - 3 dB point must be between 8 and 16 Mhz with peaking < 3 dB peaking
 - 3 dB point must be between 5 and 16 Mhz with peaking < 1 dB
 - Testing is repeated with reference clock jitter calibrated to 43.6/2 ps
- Clock recovery method used at the compliance workshop
 - Spectrum analyzer method available as back-up upon request
- Detailed procedures are available on website
- 8GT/s requirement
 - 3 dB point must be between 2 and 4 Mhz with peaking < 2 dB peaking
 - 3 dB point must be between 2 and 5 Mhz with peaking < 1 dB
Endpoint 5GT/s Selectable De-emphasis Test

- Endpoint must support 2 levels of de-emphasis at 5GT/s
 - -3.5dB
 - -6dB
- De-emphasis level selected by root port
 - During link training to 5GT/s
- Potential interoperability issue if endpoint does not respond to request
- FYI for 2.0 IL. **Required for 3.0 IL.**
- Two setups
 1. Setup similar to receiver testing using LeCroy PERT
 2. PTC card + scope
 - RT scope captures waveform at L0 with each de-emphasis setting
 - Difference in average non-transition/transition voltage at eye center must be greater than 0.5 dB
PCIe 3.0 Required Electrical Tests

- TX signal quality test at all supported link speeds (similar to 2.0 procedure)
- PLL bandwidth
- 5.0GT/s selectable de-emphasis test
- TX preset equalization test
- 8.0GT/s receiver test
- Link equalization handshaking
 - Required TX adjustments
 - Requesting link partner to adjust if needed

Detailed test equipment specific test procedures for Tx and Rx testing available at PCI-SIG website
3.0 Receiver Tests

- Rx Jitter Tolerance
 - Rotating between Agilent, LeCroy, and Tektronix test equipment
 - Run at 8GT/s
 - DUT is placed into loopback
 - DUT selects TX EQ for test equipment
 - Monitor bit stream for errors
 - Test at E-4 with allowed MB presets (Add-in Cards)
 - Presets P7 and P8 with 16” – two connector test channel

- Rx link equalization tests
 - Details in a later slide
PCIe 3.0 Electrical Tests & Tools

- **Signal Quality Analysis H/W and S/W**
 - Rj, DJdd, and TJ @ E-12
 - Eye pattern, jitter and bit rate analysis
 - Upstream and downstream signaling
 - Electrical Compliance Base Board, CBB 3.0
 - Electrical Compliance Load Board, CLB 3.0
 - Stand-alone Windows-based eye diagram analysis S/W
 - Electrical test procedures

- **Jitter Analysis DLL**
 - Channel Embedding
 - DFE
 - CTLE
 - Preset Analysis
 - Rj/Dj Separation
 - Dual Port Motherboard Test
 - Clock Recovery
 - Interpolation
 - Transition/non-transition eye points
 - Goal - Promote consistent solutions
3.0 Add-in Card Test Fixture

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbb_conn1</td>
<td>Connector</td>
<td>cbb_via</td>
<td>Via</td>
</tr>
<tr>
<td>cbb_rt5</td>
<td>4.0” Riser</td>
<td>cbb_rt7</td>
<td>10.0”, Main routing</td>
</tr>
<tr>
<td>cbb_conn2</td>
<td>Connector</td>
<td>cbb_rt8</td>
<td>0.8”, Package Breakout</td>
</tr>
<tr>
<td>cbb_rt6</td>
<td>0.2”, Connector Breakout</td>
<td>tx_spkg</td>
<td>Package, 1.3”</td>
</tr>
</tbody>
</table>

Long Fixture Channel Approximates Worst Case Real Channel Improving Correlation

[Diagram showing the connections between Main Board and Riser Board, with labels for cbb_conn1, cbb_conn2, cbb_via, cbb_rt5, cbb_rt6, cbb_rt7, tx_spkg, and RX SMP.]
3.0 Add-in Card Rx Test Calibration

Post Processing S/W
(Embed RX pkg + use behavioral EQ)

Test Equipment

Signal Generator
Sj + Rj + Diff Noise

CLB 3.0
RX
TX

TX
SMP

RX
SMP

rx_spkg

cbb_conn2

cbb_conn1

 PCIe Technology Seminar
Copyright © 2014, PCI-SIg, All Rights Reserved
3.0 Add-in Card Rx Test Setup
Link Equalization Tests

- Requires protocol-aware test equipment
 - LeCroy PERT used
- TX link equalization response test
 - Use protocol-aware test equipment to request a Tx equalization change
 - Check that the DUT responds and sets its Tx to the correct preset within required time period
 - Measurement of DUT Tx done by going to loopback and sending compliance pattern
 - Do this check for all presets
- Rx link equalization
 - Calibration the same as standard RX test
 - Start with a non-optimal Tx equalization setting (P7 or P8)
 - Allow DUT to request for equalization adjustments
 - Place DUT into loopback
 - Monitor bit stream for errors
CBB 3.0

Add-in card TX lanes

Connect to CBB Riser

Clock Injection

Compliance Mode Selection

Power Reset
CBB 3.0 Riser

Connect to CBB main board

Add-in card RX lanes
CLB 3.0

X4/x8 CLB

X1/x16 CLB
Protocol Testing
PCIe Protocol Testing

- Test Control software running on platform or Device Under Test (DUT) initiates test traffic

- PTC monitors and acts on that traffic
 - Checking protocol
 - Injecting errors
PCI Express PTCs

- x16 mechanically, x1 electrically
- 2.0 - Agilent or LeCroy 2.0 PTC used
- 3.0 - Agilent 3.0 PTC or LeCroy 3.0 PTC used
PCIe Link / Transaction Compliance Tests

- Described in Link Layer Test Spec and Transaction Layer Test Spec
 - Merged test spec for 3.0

- Speed requirement
 - Must be run at highest supported link speed

- Tests (from 1.x)
 - Reserved fields – Device ignores them
 - NAK response – Device will resend after receiving NAK
 - Replay Timers – Device will resend packet if no response
 - Replay Count – Device will resend multiple times when no response
 - Link Retrain – Device will retrain if continued no response
 - Replay TLP order – Device replays TLPs in proper order
 - Bad CRC – Device detects, drops, and logs (DLLPs & TLPs)
 - Undefined packet – Device ignores
 - Bad Sequence Number – Device detects, drops, and logs
 - Duplicate TLP – Device returns data once
 - Request Completion – Issue UR for config requests not supported
PCIe 3.0 Protocol Tests

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5GT/s selectable de-emphasis testing</td>
<td>FYI for 2.0, required for 3.0</td>
</tr>
<tr>
<td>Link Equalization Protocol</td>
<td>Verifies DUT responds to TX EQ adjustment requests</td>
</tr>
<tr>
<td>Loopback (informative, implemented)</td>
<td>Enables receiver electrical testing</td>
</tr>
<tr>
<td>Function Level Reset</td>
<td>Only for endpoints that support FLR</td>
</tr>
<tr>
<td>Latency Tolerance Requests</td>
<td>Check that upstream port sends properly formed LTR requests</td>
</tr>
<tr>
<td>Link Partner Enters/Exists Compliance Mode (informative)</td>
<td>Verify the DUT attempts link training</td>
</tr>
<tr>
<td>SKP Processing (informative)</td>
<td>Verify DUT can process a variety of SKPs</td>
</tr>
<tr>
<td>L1 for D3 state</td>
<td>Verifies DUT requests L1 entry when it goes to D3</td>
</tr>
<tr>
<td>ECRC</td>
<td>Generates correct ECRC</td>
</tr>
<tr>
<td>Reserved Bit Test</td>
<td>Extension of 2.0 test for 3.0, add reserved bit monitoring</td>
</tr>
</tbody>
</table>
Platform BIOS Testing
Platform BIOS Testing

- Protocol Test Card Can Represent Any Hierarchical Multi-Device/Bridge Topology

- Device Decodes All Type 0 and Type 1 Configuration Cycles

All BIOS testing run using 3.0 PTC at workshops
PCIe BIOS Test

- Multiple Functions per device
- Different BAR combinations
 - I/O, Mem, 64bit
 - Various size requests
 - Prefetchable, non-prefetchable
- Bridges With Resource Requests
- ASPM Configurations
- Option ROMs
 - Varying sizes
 - Different for each device function
 - Shrinkable, removable
- Complex Multiple Switch and Bridge Topologies
- 2.0 updates:
 - Use 3.0 PTC
 - No functional changes since 1.1
 - Run at 5.0GT/s as FYI
3.0 BIOS Tests

- New capabilities present in devices (ACS, IOV, etc…)
- Max payload size
 - All functions of a multi-function device are set to the same max payload size
- Common clock test
 - Common clock config bit should be set to the same on both sides of the link
- Slot Power Test
 - Configure x16 slots with >25W
- ASPM optionality (new for 3.0)
 - Only enable ASPM (L0s or L1) if both sides support it
- VC mapping
 - TC mapped to only one VC
- Clock power management
 - Should not be enabled on CEM form factor

Review the test spec for details!

Full PCIe 3.0 Bios Tests Available at Workshops
Configuration Tests
Configuration Tests – Diagram

System Test
(YI only)

System Under Test

Add In Card
Under Test

Commercially available gold system used for 2.0 and 3.0 testing
PCIECV – 2.0 Link Speed Test

- **Gold System**
 - 5GT/s capable, 2.0 spec compliant system used for testing add-in cards

- Set target link speed to limit maximum link speed and then write retrain link bit. Disable autonomous width or bandwidth changes on both components
 - Upstream 2.5 Downstream 5.0 Result 2.5
 - Upstream 5.0 Downstream 5.0 Result 5.0

- **Test criteria**
 - Autonomous Bandwidth Status must never be set
 - Config registers must never be reset
 - Actual link speed matches expected link speed
PCIe Technology Seminar

PCIECV – 2.0 Link Width Test

- CEM 2.0 spec requires x4 and x8 to be supported as intermediate widths
- Specified in 2.0 Config test spec
- Testing only static link width support
- Use low cost mechanical adaptors to do all testing with standard x16 slot
- Insert in riser card, and check that the link comes up in the correct link width

<table>
<thead>
<tr>
<th>Connector Card</th>
<th>x1</th>
<th>x4</th>
<th>x8</th>
<th>x16</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>x4</td>
<td>No</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>x8</td>
<td>No</td>
<td>No</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>x16</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Required</td>
</tr>
</tbody>
</table>

Copyright © 2014, PCI-SIG, All Rights Reserved
PCI Express 3.0 Config Tests

- PCIECV 3.0 update released
 - 2.1 spec updates
 - E.g. ARI, DPA, Resizable BAR, Multi-cast, LTR, TPH extended capabilities
 - Run tests at 8GT/s
 - 3.0 config space updates
 - Secondary PCI Express extended capability
 - IOV Capabilities
 - E.g. ATS Extended Cap, SR-IOV extended cap

- PCIECV 1.5.2.4 update released

Review the test spec for details!

Full PCIECV 3.0 version available at workshops
Test Spec ECNs

- **PLL Bandwidth Test Limits ECN**
 - Relax PLL test limits to +/-0.5MHz and +0.25dB
 - Implemented at workshops starting in 2014
- **Extended TPH enable bit** can be hardwired to 0 if extended TPH is not supported
 - ECN to base spec approved by the PWG
 - Config test spec ECN in progress
 - Currently treated as an exception
 - To be fixed in next release of PCIECV
- **BadECRC PTC test**
 - ECN to base spec approved by PWG that flow control credits be updated when TLP with bad ECRC is received is recommended but not required
 - Test spec ECN in progress
 - Preliminary updated PTC test available
PCI Express 3.0 base specification available now
✓ Your compatible architecture for new designs!

PCI Express 2.0 Integrators List testing started in September 2008
PCI Express 3.0 Integrators List testing started April 2013
PCI Express 2.0 and 3.0 testing collateral available on PCI-SIG website
For all PCI Express material, visit www.pcisig.com
Thank you for attending the PCIe Technology Seminar.

For more information please go to www.pcisig.com
Backup
2.0 FYI Endpoint Receiver Sensitivity Test

- Reduced motherboard voltage height requirement
 - 2.0 CEM Spec ECN released
 - From 300 mV to 250 mV
 - Note – 3.0 CEM spec reduced to 225 mV

- FYI Add-in Card Receiver Sensitivity Test Procedure
 - Connect add-in card (DUT) to modified 2.0 CBB
 - Modify RX lane zero on CBB to isolate toggle circuit
 - Connect test equipment output to DUT RX Lane zero
 - Connect DUT TX Lane zero to test equipment receiver
 - Test equipment sends training set sequence to send DUT to loopback state
 - Test equipment sends compliance pattern to DUT
 - Set test equipment outputs to maximum jitter allowed by CEM 2.0 spec
 - Test equipment monitors the compliance pattern from DUT Tx for errors
 - Sweep voltage margin and Sj jitter frequency to find failure margin for each Sj frequency
 - Measure eye opening at each failure point by removing DUT and adding CLB test fixture and performing standard Motherboard eye test
PCIe 1.1 Compliance Test Areas

- **Physical layer**
 - Examine electrical signaling

- **Configuration Space**
 - Verify required fields and values

- **Link & Transaction layer**
 - Exercise protocol boundary conditions
 - Inject errors and check error handling

- **Platform Configuration**
 - Check BIOS handling of PCI Express devices
CLB 2.0 (Compliance) Features

Compliance Mode (x1) Toggle Switch

X1 Ref Clk

Probing Points

X1/ X16 Selection

x16 Ref Clk / Toggle Mode Selector

x1 Ref Clk / Toggle Mode Selector

Compliance Mode (x16) Toggle Switch

X16 Ref Clk Probing Points

x1 TX SMPS
CBB 2.0 Features

Compliance Mode Selection

Power Reset

Add-in card RX lanes

Add-in card TX lanes

Resistor stuffing Option

External REFCLK Injection

Clock Noise Injection

CBB and CLB 2.0 Versions Can be Used for 2.5GT/s Testing

Copyright © 2014, PCI-SIG, All Rights Reserved
CBB For PCI Express 1.1
(Used for 1.1 Integrators List Testing)
Clean Clock 1.1 Add-in Card Testing

- 1.1 Compliance base board built to have a RefClk with very little jitter
- Provides accurate picture of device-under-test jitter
- 2.0 CBB offers lower jitter clock and continues 1.1 clean clock add-in card test model
- For test fixture availability, visit www.pcisig.com
CLB 2.0 Updates

- SMP Connectors
- Two Versions
 - x1, x16
 - x4, x8
- SMP Connectors and Probe Points For Ref Clock
- Compliance Mode Toggle Mechanism
 - 2.5GT/s
 - 5.0GT/s at -3.5 dB and -6.0 dB
- 85 Ohm Traces
PCIe 1.x Protocol Test Card (PTC)

USB2.0

x1 edge – Platform side

x16 with x1 Connection

Power from System
Worst Case Topology
The following is available on www.pcisig.com:

- Link/Transaction
 - Agilent and Lecroy 2.0 PTC ordering information
 - Agilent and Lecroy test procedures
 - Agilent and Lecroy test software

- Electrical
 - CBB 2.0 / CLB 2.0 availability and ordering information
 - Sigtest 3.1.9
 - Procedures using RT Scope
 - PLL bandwidth test procedures

- Config
 - PCIeCV 1.4.6
 - Test procedure
PCIe 1.1 Compliance Summary

<table>
<thead>
<tr>
<th>Test</th>
<th>Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endpoint</td>
</tr>
<tr>
<td>Physical Layer (Electrical)</td>
<td></td>
</tr>
<tr>
<td>- Sigtest 2.1</td>
<td>Required</td>
</tr>
<tr>
<td>- CBB / CLB 1.1</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Electrical Test Consideration (1.1)</td>
<td></td>
</tr>
<tr>
<td>- Test procedures for RT scopes</td>
<td></td>
</tr>
<tr>
<td>Configuration Space</td>
<td></td>
</tr>
<tr>
<td>- PCIECV 1.3</td>
<td>Required</td>
</tr>
<tr>
<td>- PCI Express Configuration Test Consideration (1.1)</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Configuration Test Procedure (1.1)</td>
<td></td>
</tr>
<tr>
<td>Link and Transaction Layer</td>
<td></td>
</tr>
<tr>
<td>- 1.1 PTC</td>
<td>Required</td>
</tr>
<tr>
<td>- PTC test software 1.1.0.16</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Test Considerations - Link Layer</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Test Considerations - Transaction Layer</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Link/Transaction Test Procedures</td>
<td></td>
</tr>
<tr>
<td>Clock Jitter</td>
<td></td>
</tr>
<tr>
<td>- ClockTool version 1.3</td>
<td></td>
</tr>
<tr>
<td>Platform BIOS Test</td>
<td></td>
</tr>
<tr>
<td>- 1.1 PTC</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Platform BIOS Test Software v0.90</td>
<td></td>
</tr>
<tr>
<td>Interoperability Testing (80%)</td>
<td></td>
</tr>
</tbody>
</table>
PCIe 2.0 Compliance Summary

<table>
<thead>
<tr>
<th>Test</th>
<th>Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endpoint</td>
</tr>
<tr>
<td>Physical Layer (Electrical)</td>
<td></td>
</tr>
<tr>
<td>- Sigtest 3.1.9</td>
<td>Required</td>
</tr>
<tr>
<td>- CBB / CLB 2.0</td>
<td>Required</td>
</tr>
<tr>
<td>- PCI Express PHY Test Spec 2.0</td>
<td>Required</td>
</tr>
<tr>
<td>- Test procedures for RT scopes</td>
<td>Required</td>
</tr>
<tr>
<td>PLL BW Testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>Configuration Space</td>
<td></td>
</tr>
<tr>
<td>- PCIECV 1.4.6</td>
<td>Required</td>
</tr>
<tr>
<td>- PCI Express Configuration Test Spec 2.0</td>
<td>Required</td>
</tr>
<tr>
<td>- PCI Express Configuration Test Procedure 2.0</td>
<td>Required</td>
</tr>
<tr>
<td>Link and Transaction Layer</td>
<td></td>
</tr>
<tr>
<td>- 2.0 PTC</td>
<td>Required</td>
</tr>
<tr>
<td>- PTC test software</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Link Layer Test Spec 2.0</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Transaction Layer Test Spec 2.0</td>
<td></td>
</tr>
<tr>
<td>- PCI Express Link/Transaction Test Procedures 2.0</td>
<td></td>
</tr>
<tr>
<td>Clock Jitter</td>
<td></td>
</tr>
<tr>
<td>- ClockTool version 1.3</td>
<td></td>
</tr>
<tr>
<td>Platform BIOS Test</td>
<td></td>
</tr>
<tr>
<td>- 1.1 PTC</td>
<td>Required</td>
</tr>
<tr>
<td>- PCI Express Platform BIOS Test Software v0.90</td>
<td></td>
</tr>
<tr>
<td>Interoperability Testing (80%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Required</td>
</tr>
</tbody>
</table>