Meet the Presenter

David Harriman
PCI-SIG® Protocol Workgroup (PWG) Chair
Senior Principal Engineer, Intel
Disclaimer

• The information in this presentation refers to specifications still in the development process. This presentation reflects the current thinking of various PCI-SIG® workgroups, but all material is subject to change before the specifications are released.
Outline

• Review Context of IDE & Relationship with CMA/DOE & SPDM
• IDE Use Models
• Device’s Responsibilities in Maintaining Security
• Next Level of Detail on IDE Draft ECN
• Conclusions and Call to Action
Key Computational Security Needs

• Protection of key assets
 • Consumers: data integrity, confidentiality
 • Businesses & suppliers: reputation, revenue-stream, intellectual property, business continuity
 • Governments: national security, defense, elections, infrastructure

• Fully secured infrastructure “edge-to-core”

• Must protect against supply chain attacks, physical attacks, persistent attacks, malicious components, etc

• Must secure entire component lifecycle (manufacturing, installation, initialization, operation, addition & replacement)
PCI-SIG® & DMTF Specifications for Security

- **SPDM** defines a “toolkit” for authentication, measurement, and other security capabilities.
- **CMA** defines how SPDM is applied to PCIe devices/systems.
- **DOE** supports Data Object transport between host CPUs & PCIe components over PCIe.
- Various MCTP bindings support Data Object transport over different interconnects.
- **IDE** will typically use this toolkit for key exchange, but can use other mechanisms for keys.
PCI-SIG® and DMTF Specifications – Status

Security Protocol and Data Model – SPDM (DSP0274)
- Component Measurement and Authentication (CMA)
- IDE key programming protocol

SPDM over MCTP Binding (DSP0275)
- Secured MCTP Messages over MCTP Binding (DSP0276)
- MCTP over SMBus Binding (DSP0237)
- MCTP over PCIe Binding (DSP0238)

Data Object Exchange (DOE)

Integrity and Data Encryption (IDE)

Legend:
- DMTF
- PCISIG

IDE D-ECN to Base 4.0/5.0 is in Review Zone – Member Review ends 7 Sept 2020

- **SPDM:**
 - https://www.dmtf.org/dsp/DSP0274
 - Current release (1.0.0) covers Authentication and Measurement
 - 1.1 pending
 - 1.2 (in work queue) will be required for IDE key programming

- **CMA published Apr 2020:**
 - https://members.pcisig.com/wg/PCI-SIG/document/14236

- **DOE published Mar 2020:**
 - https://members.pcisig.com/wg/PCI-SIG/document/14143

- **IDE in Review**
 - Goal: Final Publication End of Q3
Overview: PCIe® Technology Integrity and Data Encryption (IDE)

- Goals: Provide confidentiality, integrity, and replay protection for PCIe Transaction Layer Packets (TLPs)
 - Support wide variety of use models
 - Broad interoperability
 - Aligned to industry best practices & extensible

- Security model - Physical attacks on Links, to read confidential data, modify TLP contents, & reorder and/or delete TLPs, via:
 - lab equipment
 - purpose-built interposers
 - malicious Extension Devices

- TLPs can be protected while transiting Switches
 - Extends security model to address attacks via Switches

- Applies AES-GCM for encryption of TLP Data Payload and authenticated integrity protection of entire TLP
IDE TLPs

- Examples show TLP format for Selective IDE
- For Link IDE the Local Prefix(es) are also integrity protected
- Aggregation can apply to up to 8 TLPs

Non-FLIT Mode TLPs shown – For Base 6.0 with FLIT Mode the TLP format will be different
Streams & Sub-Streams

- Each IDE Stream includes Sub-Streams distinguished by TLP type and direction
 - Posted Requests, Non-Posted Requests, & Completions
- Sub-Streams allow the PCIe Producer/Consumer model to be followed in a way that also works well with AES-GCM
 - The TLPs in a Sub-Stream are processed in-order
 - Each Sub-Stream has a unique key and invocation counter
- Within a Stream, Sub-Streams require modification of the Switch ordering rules for flow-through Selective IDE (top right)
 - Between Streams and with non-IDE TLPs, the ordering rules are unchanged
- Examples of permitted and forbidden reordering (right)
IDE Use Models – Link vs. Selective

- IDE establishes an IDE Stream between two Ports
- Can use Link IDE and/or Selective IDE between two directly connected Ports (e.g. A & B, C & D)
- Desirable if, e.g., different security policies are applied to the Selective IDE TLPs.
- IDE does not establish security beyond the boundary of the two terminal Ports
- Selective IDE Streams between Ports C and G, and between Ports G and H, are secured as they pass through the Switch
- IDE provides security from Port to Port
 - Security must be provided implementation-specific means within the Component past the terminal Port
 - With TLPs flowing “hop-by-hop” through one or more Switches, it is necessary to ensure acceptable security is maintained within the Switch(es)
System Construction

• In-line securing of TLPs – a “data plane” capability
• Stream establishment & management – a “control plane” capability
• IDE defines key programming from a central trusted entity (e.g., Host Firmware/Software, BMC)
• Supports “Set & Forget” model as well as more active/dynamic approaches
System Level Considerations

• “Verifier” Implementation is key, but outside scope of PCIe® Base specification
 • Build on CMA/SPDM foundation
 • System level policies expected to vary significantly
 • Revisit industry spec requirements as experience base increases

• Securing centralized functions
 • Centralized key programming – single point of failure must be secured!
 • IDE stops at the Port – buffers/memory & processing resources must prevent leaks
Device’s Responsibilities in Maintaining Security

- Device requirements parallel those for the Host
- Keys must be secured!
- No paths around encryption eliminated/blocked
- Debug mechanisms must be carefully controlled
IDE Draft ECN – Few Remaining Opens

• Key programming protocol
 • Coordinated with SPDM 1.2
 • Optimizing the layering structure

• Seeking feedback on key size and related requirements
 • See “NOTE TO REVIEWERS”

• Balance between spec / implementation flexibility in “control” plane, e.g.
 • Mechanisms for “locking” configuration
 • Details of set-up and tear-down
Conclusions and Call to Action

• Integrity and Data Encryption (IDE) – In Review
 • Please review and provide feedback

• Consider IDE applies in your applications

• Engage with PCI-SIG®
 • Consider Next Steps for the PCIe® Base Specification
Questions
Thank you for attending the PCI-SIG Q3 2020 Webinar

For more information please go to www.pcisig.com