

PCI-SIG[®] Educational Webinar Series 2019

Retimers to the Rescue: PCI Express[®] Specifications Reach Their Full Potential

Presented by Kurt Lender and Casey Morrison

Meet the Presenters

Kurt Lender PCI-SIG MWG Chair and IHV Enabling Manager, Data Center Group, Intel Corporation Casey Morrison Head of Systems and Applications, Astera Labs

Introduction – Problem Statement PCIe® Ecosystem Perspective

Introduction – Problem Statement **PCle[®] Ecosystem Perspective**

260

240

220

200

180

160

120

100

80

60

40

0.13

(PCI) 20 0.13

1992

.53

(PCI 2.0)

0.26

1995

8 (x16)

(PCle 1.0)

2004

— Actual Bandwidth (GB/S) — I/O Bandwidth Doubles Every Three Years

4.2 (PCI-X 2.0)

2001

1.06

(PCI-X)

0.5

1998

Bandwidth (GB/s)

PCI

PCI 🦉

SIG

Increasing Gen to Gen Channel Reach Pressures

PCIe 4.0 Server Channel Lengths

cpu_brd	aic_brd	CPU pkg/skt	cpu brd+pkg	AIC brd+pkg	AIC brd	AIC pkg	CPU brd	AIC brd	Total
material	material	[dB]	[dB]	[dB]	[dB]	[dB]	["]	["]	PCB ["]
	low loss	4.1	18.5	6.5	3.4		13.7	4	17.7
low loss	mid loss		16.5	8.5	5.4		11.4	4	15.4
	high loss		15.1	9.9	6.8		9.7	4	13.7
mid loss	mid loss	4.1	16.5	8.5	5.4	3.11	7.3	4	11.3
1110 1055	high loss		15.1	9.9	6.8		6.3	4	10.3
high loss	high loss		15.1	9.9	6.8		5.1	4	9.1

Introduction – Problem Statement Signal Integrity Perspective

Doubling Speed, Reduced Signal Reach

PCle Rev	Total channel loss budget	Root Package	Non-root Package	CEM connector	Add-in Card (AIC)	Budget for system board
3.0 (8 GT/s)	22 dB	3.5 dB	2.0 dB	1.7 dB	6.5 dB	10.3 dB
4.0 (16 GT/s)	28 dB	5.0 dB	3.0 dB	1.5 dB	8.0 dB	13.5 dB
5.0 (32 GT/s)	36 dB	9.0 dB*	4.0 dB*	1.5 dB [†]	9.5 dB†	16.0 dB

*ILfit_{TX-ROOT-DEVICE} and ILfit_{TX-NON-ROOT-DEVICE} parameters in the base specification. *Based on CEM 5.0 version 0.5.

System board budget includes: vias, stubs, AC coupling capacitor, and microstrip/stripline trace

Example: Two-Socket System Board (from OCP)

SIG

Problem Scenario

Problem Scenario Mid-Loss Material **Possible Solution: Upgrade** Total **PCB Material Non-Root PKG** Channel Over Add-in Card Loss [dB] Low-Loss Material spec **Ultra-Low-Loss** limit Connector Material Non-Root PKG 36 dB J Margin Add-in Card (PCle 5.0) Non-Root PKG Connector Add-in Card

 System Board (Mid-Loss)
 System Board (Low-Loss)
 Add-in Card Connector

 Root PKG
 Root PKG
 Root PKG

May not be enough for:

SIG

- Base board >8 in.
- Multi-connector
- Cabled topologies

Ways to Solve the Signal Integrity Problem

Ways to Solve the Signal Integrity Problem-

Problem Scenario

- May not be enough for:
- Base board >8 in.
- Multi-connector
- Cabled topologies

Key Points

PCI

SIG

- Upgrading PCB material only improves one aspect of total channel: System board
- Even advanced PCB materials may not be enough for longest ports
- Retimers segment the channel into two, creating more margin on each Link segment

PCB Materials

- There is no industry standard definition of **Mid-loss**, **Low-loss**, and **Ultra-low-loss**.
- Actual insertion loss will vary depending on specific material properties, routing layer, trace width, copper roughness, stackup, environment, etc.
- System designers should determine loss numbers which are representative of their design and use case
- The following values are representative examples:

PCB Material				e unit leng inal Condi (dB/inch)		PCB trace unit length loss – Worst-case Conditions (dB/inch)		
Category	Nominal-to-worst- case scaling	Signal routing type	4 GHz	8 GHz	16 GHz	4 GHz	8 GHz	16 GHz
Mid-loss	16%	Stripline	0.65	1.16	2.3	0.75	1.35	2.7
10110-1055		Microstrip	0.69	1.27	2.4	0.80	1.47	2.8
Low-loss	12%	Stripline	0.50	0.85	1.6	0.56	0.95	1.8
LOW-IUSS		Microstrip	0.58	1.05	1.8	0.65	1.18	2.0
Ultra	8%	Stripline	0.35	0.58	1.02	0.38	0.63	1.1
low-loss		Microstrip	0.41	0.72	1.15	0.44	0.77	1.2

Key Points

- Not all "Low-Loss" materials are the same
- It's critical to understand the loss characteristics at worst-case temperature & humidity

Reach Implications

- PCI SIG[®]
- A Link which operates "on the edge"—for example, 1E-12 bit error rate (BER)—will enter Recovery at a rate of once every <u>10 seconds</u>, and it will Replay a TLP every <u>1 second</u> for a x16 Link at 32 GT/s.^[1]
- The same analysis shows that if the channel loss is reduced by a few dB, BER can improve significantly.
- System designers want peace of mind, and many employ Safety Margin on top of PCIe[®] channel guidelines.
- Safety Margin: self-imposed reduction in channel loss limit to allow for manufacturing variances, simulation-tomeasurement correlation mismatches and other unforeseen degradations affecting system performance.

Max Reach for Traditiona	Key Points						
	16 GT/s			32 GT/s			• At PCIe 5.0
Case	Mid-Loss	Low-Loss	Ultra- Low-Loss	Mid-Loss	Low-Loss	Ultra- Low-Loss	technology speed, "Low-Loss" material
Max system board trace, Nominal conditions	10.0 in	12.7 in	18.6 in	6.2 in	8.6 in	13.5 in	enables ~5-inch system board trace
Max system board trace, Worst-case (WC) conditions	8.6 in	11.4 in	17.3 in	5.3 in	7.7 in	12.5 in	 Upgrading to "Ultra-
Max system board trace, WC and 15% safety margin	5.6 in	7.5 in	11.3 in	3.4 in	4.8 in	7.9 in	low-loss" will enable ~8 inches.

[1] PCI-SIG® DevCon 2019, "Impact of Bit Errors in PCIe 5.0 for Latency-Critical Applications," https://members.pcisig.com/wg/PCI-SIG/document/13087?downloadRevision=active

Redrivers and Retimers

o **<u>Redriver</u>**

- Analog signals coming in are filtered and/or amplified
- Jitter and noise may get worse or at least stay the same

o <u>Retimer</u>

- Analog signals become data inside device, and data is retransmitted
- Can fully regenerate signals, but at a latency cost

• "Repeater" is a superset term used to refer to both (caution: use of this term may cause confusion)

What is a Redriver?

Redriver: Non-protocol-aware softwaretransparent extension device^[1]

- Mostly analog, designed to boost highfrequency portions of a signal
- Data path typically includes a continuous time linear equalizer (CTLE), a wideband gain stage, and linear driver
- Redrivers do not compensate uncorrelated jitter (e.g. RJ, uncorrelated deterministic jitter, etc.)
- Redrivers do not participate in Link EQ
- No formal standard or compliance program

Redriver block diagram

Read more in this PCI-SIG blog paper: <u>https://pcisig.com/pci-express%C2%AE-retimers-vs-</u> <u>redrivers-eye-popping-difference</u>

What is a Retimer?

Retimer: A physical layer protocol-aware, software-transparent extension device^[1]

- Covered in PCIe[®] 4.0 & PCIe 5.0 specifications (Section 4.3)
- Mixed-signal analog/digital device—fully recovers data, extracts clock, and retransmits clean data
- Complies with all PCIe electrical specifications
- Performs Receiver detection and Lane-to-Lane deskew
- Executes Link equalization Phases 2 & 3
- Supports "Equalization to highest rate" and "No equalization needed" PCIe modes

Retimer block diagram

Retimers in a System

Reach Extension Solutions Comparison

	PCB Material	Retimer	Redriver
Pros	 Enables modest reach extension for PCIe 4.0 and PCIe 5.0 specifications No power or latency impact 	 Enables 2x to 3x PCIe[®] channel loss with conventional PCB material Supported by PCIe 4.0 and 5.0 specs with compliance program 	 Enables modest reach extension up to PCIe 4.0 technology but vendor specific Minimal impact to latency
Cons	 Impacts the cost of the whole PCB Only enables up to 5-8 inches at 32 GT/s 	 Adds power and latency Impacts BoM cost for select ports 	 Not defined in PCIe Base Specification No formal compliance test Some impact to power and Bill of Materials (BoM) cost
Comments	 Margin must be kept for AIC and Root Port package May still require off-board extension for storage 	 Usable in open-slot and closed systems 	 More viable for closed-slot systems Some applications up to PCIe 4.0 technology given sufficient amount of testing is performed

- PCI Express[®] Retimer Test Specification currently at Rev 0.9
- Currently in "FYI testing" phase
- Intent of the Test Specification is to confirm a stand-alone Retimer is compliant to the PCIe 4.0 Base Specification
- Coverage not all inclusive
 - Electrical Tests
 - Test Macros (Reset, Forwarding, Speed Change, Electrical Idle, etc.)
 - Logical Retimer Tests
 - Interoperability tests
 - Architecture PHY Tests

Designing with a Retimer High-Level Methodology

1. Scope out the range of trace lengths needed for the system.

Example:

Link	Max speed required	Approx. Length	Special topology considerations
Slot 1: x8 for SSDs or accelerator	16.0 GT/s	9 in	Standard AIC
Slot 2: x8 for SSDs or accelerator	16.0 GT/s	9 in	Standard AIC
Slot 3: x16 for NIC or GPU/Accelerator	32.0 GT/s	8 in	Standard AIC or Riser
Slot 4: x16 for NIC or GPU/Accelerator	32.0 GT/s	10 in	Standard AIC or Riser
Slot 5: x16 for NIC or GPU/Accelerator	32.0 GT/s	8 in	Standard AIC or Riser
Slot 6: x4 for SSDs	16.0 GT/s	10 in	Internal cable
Slot 7: x4 for SSDs	16.0 GT/s	9 in	Internal cable
Slot 8: x8 for SSDs	16.0 GT/s	6 in	Internal cable

2. Chose a combination of PCB material and Retimer to meet system performance and cost requirements

Example:

Link	Max speed Appro		Special topology	I	Note		
	required	Length	considerations	Mid-Loss	Low-Loss	Ultra-Low-Loss	
Slot 1: x8 for SSDs or accelerator	16.0 GT/s	9 in	Standard AIC	Yes	Maybe	No	1
Slot 2: x8 for SSDs or accelerator	16.0 GT/s	9 in	Standard AIC	Yes	Maybe	No	1
Slot 3: x16 for NIC or GPU/Accelerator	32.0 GT/s	8 in	Standard AIC or Riser	Yes	Yes	Maybe	1
Slot 4: x16 for NIC or GPU/Accelerator	32.0 GT/s	10 in	Standard AIC or Riser	Yes	Yes	Maybe	2
Slot 5: x16 for NIC or GPU/Accelerator	32.0 GT/s	8 in	Standard AIC or Riser	Yes	Yes	Maybe	1
Slot 6: x4 for SSDs	16.0 GT/s	10 in	Internal cable	Yes	Yes	Maybe	3
Slot 7: x4 for SSDs	16.0 GT/s	9 in	Internal cable	Yes	Yes	Maybe	3
Slot 8: x8 for SSDs	16.0 GT/s	6 in	Internal cable	Yes	Maybe	Maybe	3

Notes:

- 1: Need for Retimer depends on whether you want to reserve safety margin or not.
- 2: With ultra-low-loss material, if a riser card is used, then a Retimer will likely be required on the Riser.
- 3: Depends on length of cable and number of connectors, but typically >2 connectors will necessitate a Retimer.

- 3. Identify opportunities to group ports requiring a Retimer together to reduce solution size
 - Multiple x4 and/or x8 Links can utilize a single x16 Retimer, using **bifurcation** as needed.

4. Determine optimum placement for the Retimer(s)

- Place close enough to the slot to allow for a variety of cards and cables to be used, including *passive* riser cards.
- Consider air flow and routing density.

Bifurcation: Segmenting a xN device (e.g. N=16) into multiple, smaller Links (e.g. x4x4x8).

PC

SIG

- 5. Check Signal Integrity (SI) by running IBIS-AMI simulations, adjust placement as necessary
 - A Retimer has two Link segments: RC-to-RT and RT-to-EP
 - Each can be simulated independently through SeaSim (to assess the passive channel) or IBIS-AMI (to assess the channel plus RC, RT, and RP).

Retimer Diagnostic Capabilities

Standard Diagnostic Capabilities

• Slave Loopback

- Optional feature in PCIe[®] Base Spec
- Allows data to loop back from RC to RT or from EP to RT

• Receiver Margining

- Like any PCIe receiver, Retimers must support Receiver Margining via Control SKP Ordered Sets
- Eye opening can be assessed on BOTH Pseudo Ports

In-Band Register Reads

- Read status information from the Retimer via in-band Control SKP Ordered Sets
- This, unfortunately, requires the Link to be up

Other Possible Diagnostic Capabilities

• Full Eye Capture

 Recording the shape of the eye, beyond just the timing and voltage margin reported by Receiver Margining

• Protocol Status Reporting

- A Retimer is aware of the physical layer protocol events on both the Upstream and Downstream Pseudo Ports.
- It can record this information and report it to a system controller as needed to facilitate Link debug
- It can possible generate interrupts to a system controller on important events (e.g. unexpected entry to Recovery)

- With Speeds increasing, the need for Retimers will continue to increase.
- PCIe 6.0 specification is planning for 64 GT/s using PAM4 signaling and targeting similar channel reach as PCIe 5.0 specification.
- Retimers will need to support the same 64 GT/s PAM4 signaling and operate within the BER constraints required for a low-latency forward error correction (FEC).
- <u>Low latency</u> is key for many emerging PCIe applications: machine learning, artificial intelligence, distributed computing
- Retimers must innovate along with RCs and EPs to keep PCIe Links fast, low-power, and low-latency.

PCI-SIG members have access to the PCIe[®] specification library. If you would like to learn more about joining, please visit the PCI-SIG website:

https://pcisig.com/membership/become-member

Questions?

Thank You For Attending