

PCI Express® Technology for Automotive Functional Safety (FuSa)

PCI-SIG[®] Automotive Webinar Series

June 16, 2021

Copyright © 2021 PCI-SIG. All Rights Reserved

Speakers

Ron DiGiuseppe

Automotive IP Segment Manager, Synopsys

Ron DiGiuseppe is the Automotive IP Segment Manager at Synopsys. He is responsible for automotive segment marketing for Synopsys DesignWare Intellectual Property (IP) solutions for ADAS, Connected Car, & Infotainment applications. Ron brings more than 22 years of semiconductor experience to Synopsys.

Prior to joining Synopsys, Ron held a range of management positions at Xilinx for automotive connectivity IP products as well as engineering development and management roles for companies including Oki Semiconductor, NEC, and Raytheon Corporation.

Stephanie Friederich

Systems Engineer, Intel Corporation

Stephanie Friederich is a Systems Engineer at Intel Corporation. She is responsible for system architecture for both automotive and industrial applications in the Autonomous Transportation and Infrastructure Division. Stephanie brings in experience in developing and debugging complex system designs including high speed data transmission.

Stephanie earned her MS and PhD in Electrical Engineering from the Karlsruhe Institute of Technology.

Thierry Beaumont

Functional Safety Engineer, Intel Corporation

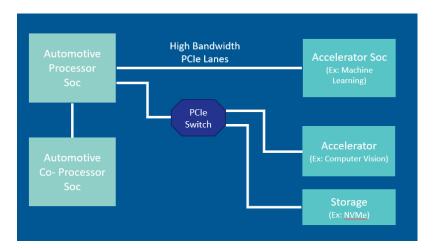
Thierry Beaumont is a Functional Safety Engineer at Intel Corporation. He is responsible for analyses of SoC in the Autonomous Transportation and Infrastructure Division.

Prior to joining Intel Corporation, Thierry work for 10 years in the automotive industry, held team lead position and developer position for ECU up to ASIL D at Continental Powertrain.

Agenda

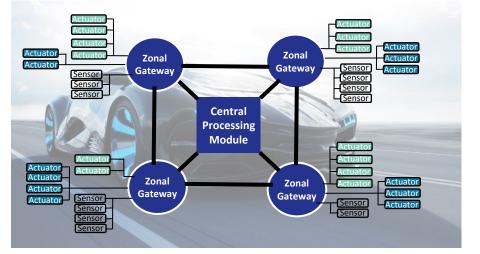
- Introduction of PCIe[®] technology in Automotive for Safety critical applications
- Functional Safety (FuSa) background
- PCIe Functionality for Functional Safety
- PCIe technology and additional safety mechanisms to meet ASIL B and beyond
- PCIe technology for Automotive FuSa Summary

SIG


Introduction

PCI EXPRESS[®] FOR AUTOMOTIVE FUNCTIONAL SAFETY (FUSA)

PCle[®] Technology: Ideal for Automotive Applications (1/2)


ADAS Domain Controller

Technology Requirements

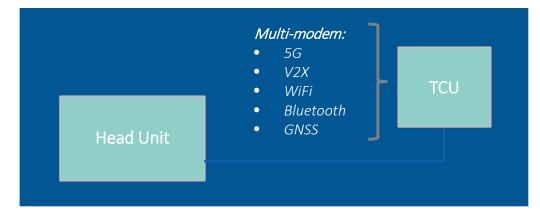
High Bandwidth Scalability Low Latency Hypervisor / Virtualized applications Better usage of power/thermal Security Functional safety

Data Backbone

Technology Requirements

High Bandwidth Low Latency EMC/EMI Reliability of long reach cable link Security Functional safety

PCle[®] Technology: Ideal for Automotive Applications (2/2)


Storage SSDs for Infotainment and AD

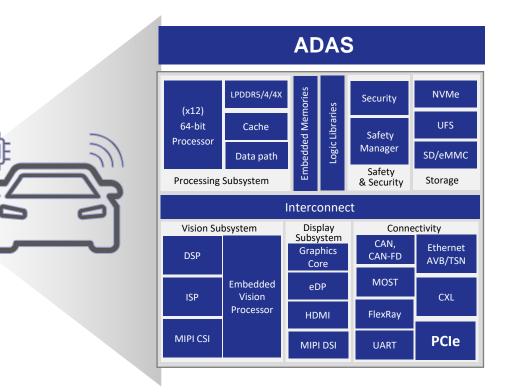
Technology Requirements

High bandwidth and fast startup/boot Very Low latency Very High Endurance & Extended data retention Very High Density & Guaranteed write performance Stable performance over time/temperature SRIOV Functional Safety

Telematics Connectivity

Technology Requirements

High Bandwidth/Throughput Data Reliability and Integrity EMC/EMI Reliability of long reach cable link Security Functional safety



PCI Express[®] for Automotive Functional Safety

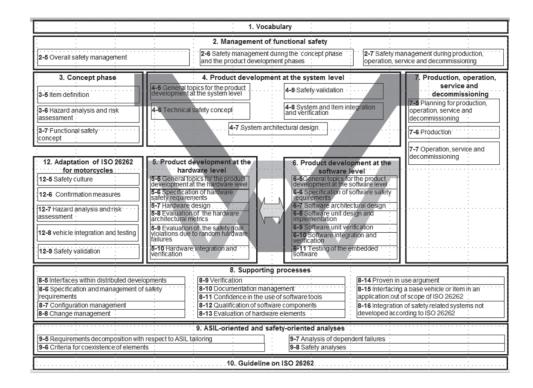
Use Case	Item	PCIe Use Model	Application
1	Scaling Compute Processing	Chip-to-Chip	ADAS & IVI Domain Controllers Autonomous Vehicle (AV) Zonal Architecture-Central Processing
2	Data Backbone	Long Reach	Zonal Architecture-In Car Network
3	PCIe Based Storage	Chip-to-Chip Module	BlackBox ADAS/AV Mapping Infotainment
4	Connectivity: Telematic Control Unit (TCU)	Chip-to-Chip Module Long Reach	Telematics: BT, WIFI, 4G & 5G V2X

PCle[®] Architecture: Mission Critical for Automotive SoCs

- PCI Express[®] technology is mission critical for automotive SoCs
- Interfaces: LPDDR5/4/4X, Ethernet TSN, MIPI, HDMI, CXL, eDP, CAN
- Processing: Al Accelerators, Embedded Vision, DSP, Security
- Security & SoC Safety Manager
- Sensor Fusion
- 16-/14-nm → 8-/7-nm → 5-nm
- Functional Safety

Functional Safety (FuSa) background

PCI EXPRESS® FOR AUTOMOTIVE FUNCTIONAL SAFETY


- □ Safety Standards and Automotive Safety Standard Overview
- Definition
- □ Example : Lane Departure Warning

Safety Standards

- IEC 61508:2010
 - Foundational standard
 - Electrical, electronic, and programmable electronic systems (typically in Industrial)
 - Stand-alone & basis for sector-specific standards
- ISO 26262: 2018 2nd Edition (Automotive)
 - Programmable electronics installed in series production passenger vehicles
 - Addresses possible hazards caused by the malfunctioning behavior of safety related electrical and/or electronic (E/E) systems (i.e., malfunctions in the presence of faults)
 - 10 parts are Normative
 - 2 parts are Guideline

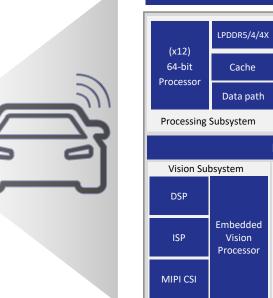
ISO 262626 Definition Fault and Safety Measure

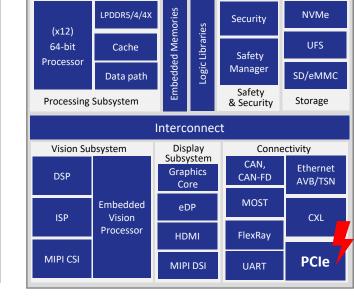
• fault definition from ISO26262:2018 Part 1 Vocabulary abnormal condition that can cause an *element* or an *item* to fail

Note 1 to entry: **Permanent**, intermittent, and *transient faults* (especially soft -errors) are considered. Note 2 to entry: When a subsystem is in an *error* state it could result in a fault for the *system*. Note 3 to entry: An intermittent fault occurs from time to time and then disappears again. This type of fault can occur when a *component* is on the verge of breaking down or, for example, due to a glitch an internal malfunction in a switch. Some *systematic faults* (e.g. timing marginalities irregularities) could lead to intermittent faults.

 safety measure definition from ISO26262:2018 Part 1 Vocabulary activity or technical solution to avoid or control systematic failures and to detect random hardware failures or control random hardware failures, or mitigate their harmful effects

Note to entry: Safety measures include safety mechanisms.


Example : FMEA and software without the use of global variables, ECC, Parity


Example: ADAS Lane Departure Warning

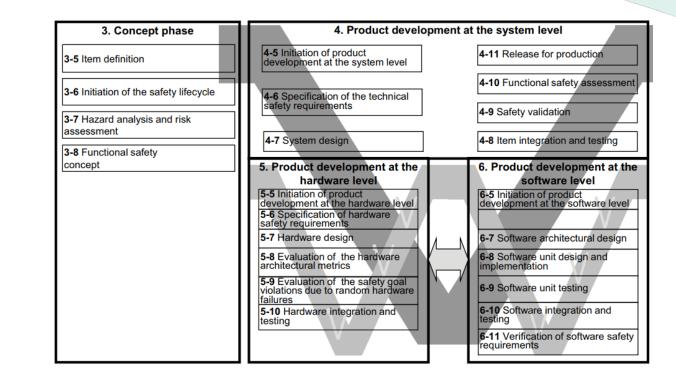
Automotive Safety Integrity Level (ASIL) ISO 26262-3:2018, Road vehicles — Functional safety — Part 3: Concept phase

- **Item:** Lane Departure Warning ۲
- **Malfunction**: Lane departure warning is • unavailable to notify driver of car drifting outside of lane
- **Hazard**: Car will stray from intended path •

ADAS

Malfunction / Hazard	Operational Domain	Mitigation/failback	Harm
Lane departure warning is unavailable to notify driver of car drifting outside of lane	City Street	Driver maintains correct path	Side collision with car
	(Exposure of E3)	(Controllability of C3)	(Severity of S2)

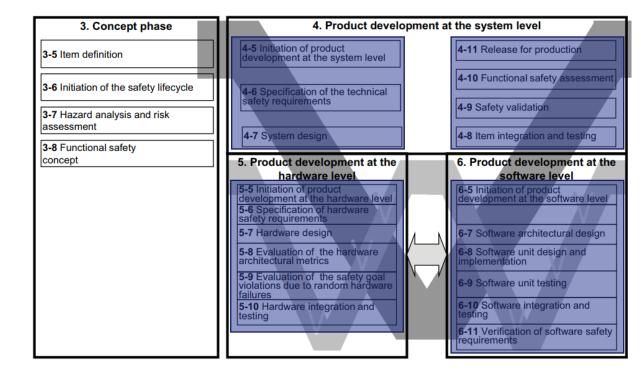
ISO 26262 Part 10 Clause 9 Safety Element out of Context


Assumed Safety Goal	ASIL	Assumed Safe State
Fault on the inter processor communication shall be mitigated	В	Feature deactivated and driver warned

ISO 26262 Work Product Overview

	-		Vocabul	.,	<u> </u>		
	1	2. Managem	ent of fun	ctional safety	10. IX	1 1	
2-6 Overall safety management		2-6 Safety manage and the product de	2-6 Safety management during the concept phase and the product development phases 2-7 Safet		2-7 Safety mi operation, set	y management during production.	
3. Concept phase	4. Product development at the system level			7. Production, operation service and			
3-5 flem definition		topics for the product at the system level		4-8 Safety validation	1.000	decommissioning	
3-6 Hazard analysis and risk assessment	4-4 Techni	cal datety concept		4-8 System and item in and verification		256 Planning for production, operation, service and decommissioning	
8-7 Functional safety concept	4-7 System architectural design			7-6 Production			
						7-7 Operation, service and decommissioning	
12. Adaptation of ISO 26262 for motorcycles 12-8 Salety culture	6. Product development at the hardware level 5-6 General books for the product development at the frammane level			6. Product development at the software level 6-6. General tops of or the product development at the software level			
12-6 Confirmation measures		ation of hat	E-6 Specification of s				
12-7 Hazard analysis and risk assessment	5-7 Hardwate design 5-8 Evaluation of the hardware architectural metrics			6-17 Software architectual design 6-8 Software unt design and mpainmentation 6-8 Software und vertication 6-19 Software untegration and were also			
12-9 vehicle integration and testing 4-9 Evaluation du talures		9 Evaluation of the safety post					
		are integration and	Software		mbedded		
		8. Sup	porting pr	ocesses			
8-6 Interfaces within distributed developments 9-6 Specification and management of safety requirements 8-7 Configuration management 8-8 Change management		B-9 Verification S-10 Documentation management B-11 Confidence in the use of software tools S-12 Cavalify alto of software components B-13 Evaluation of hardware elements		E-14 Proven in use argument E-15 interfacing a base vencie or item in an application out of scope of ISO 26262 S-16 integration of sately-related systems not developed according to ISO 26262			
9-5 Requirements decomposition with i 9-4 Criteria for coexistence of elements			and safety	9-7 Analysis of depe 9-8 Safety analyses	ndent failures		

- Item Definition
- Functional Safety Concept
- Safety Plan
- Technical Safety Concept
- Hardware Safety Requirement
- Software Safety Requirement


- Integration and Testing
- Failure Mode Effect Analyses (FMEA)
- Safety Manual

What Types of Faults Does ISO Cover?

Systematic Faults

- Systematic faults can only be eliminated by a change of the design or of the manufacturing process, operational procedures, documentation or other relevant factors.
- Examples of systematic faults include incorrect requirements,
- Work Product Related
 - Item Definition
 - Safety Plan
 - Functional Safety Concept
 - Technical Safety Concept
 - Hardware Safety Requirement
 - Software Safety Requirement
 - Software Unit Testing
 - Verification of Software Requirements
 - Tool Classification and Qualification for Hardware and Software

What Types of Faults Does ISO Cover?

Hardware Random Faults

- Related to faults of the hardware itself:
 - Permanent Fault examples: Stuck-at bit, over voltage condition
 - Transient Fault example: Soft error Rate due to radiation strike
 - JESD89-2A TEST METHOD FOR ALPHA SOURCE • ACCELERATED SOFT ERROR RATE
 - JESD89-3A TEST METHOD FOR BEAM ACCELERATED SOFT ERROR RATE

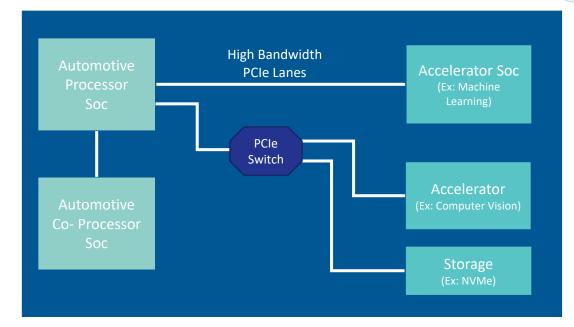
	ASIL B	ASIL C	ASIL D
Single Point Fault metric (SPFm)	≥90%	≥97%	≥99%
Latent Fault Metric (LFM)	≥60%	≥80%	≥90%
Probabilistic metric for Random HW Failures (PMHF)	100 FIT	100 FIT	10 FIT
		hardwa 5-5 Initiation of pro- development at the 5-6 Specification of safety requirement 5-7 Hardware dese 5-8 Evaluation of architectural metric 5-9 Evaluation of violations due to refailures 5-10 Hardware information testing	oduct he hardware level of hardware hts sign the hardware ics the safety goal andom hardware

PCI EXPRESS[®] FOR AUTOMOTIVE FUNCTIONAL SAFETY (FUSA)

PCIe technology use-cases and safety expectations
Reliability, Availability, Serviceability (RAS) as FuSa enabler

PCIe use-cases and safety expectations

Application


- Chip-to-Chip communication
- Compute scalability
- ADAS domain controllers

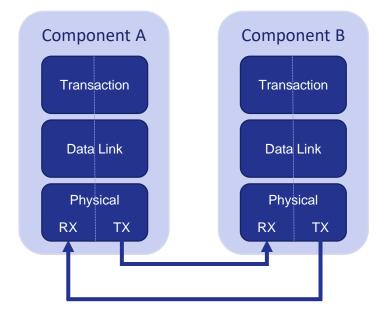
Trend

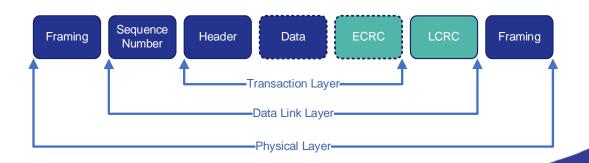
- Increase in compute processing
- High bandwidth
- Low latency requirement motivating native PCIe links

Technology Requirements

- Scalability
- High bandwidth & low latency
- Automotive functional safety

PCIe technology provides basic requirements inherently

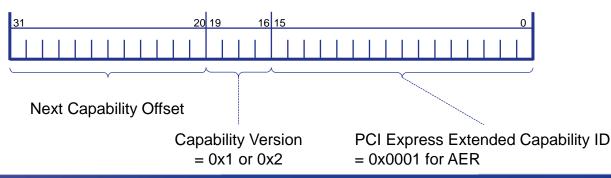


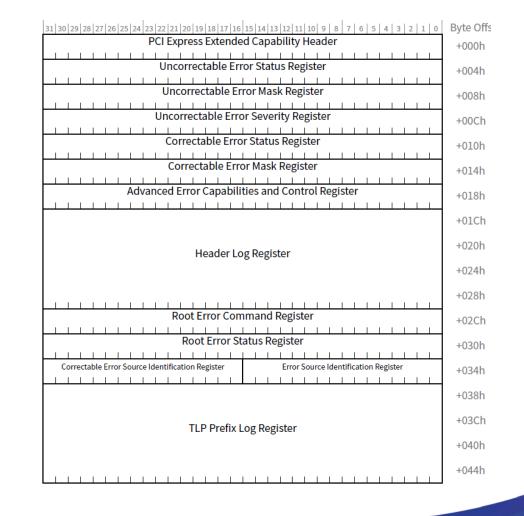

Data Reliability already given by PCIe spec

End-to-End Data Integrity on Data Link Layer

- 32-bit CRC (LCRC) code to detect errors in TLPs on a Link-by-Link basis
- Applies a Link-by-Link retransmit mechanism for error recovery
- LCRC is regenerated by PCIe switches and increases the risk of data corruption

Enabling end-to-end data integrity detection by adding transaction Layer end-to-end 32-bit CRC (ECRC) can be placed in the TLP Digest field at the end of a TLP





PCIe Advanced Error Reporting (AER) Capability

- Optional feature that can be implemented by PCIe devices supporting advanced error control and reporting
- Error registers show the status of individual errors on a PCI Express device function and define the error severity, error logging, error mask ability and to identify the source of error
- AER provides the granularity and details of correctable and uncorrectable errors
- AER supports the safety goal to detect failures and then proceed to a safe state

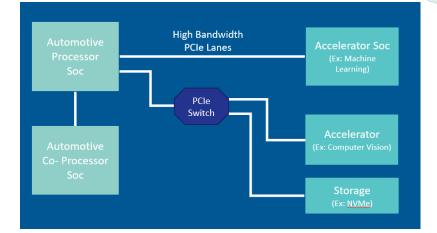
Advanced Error Reporting Extended Capability Header

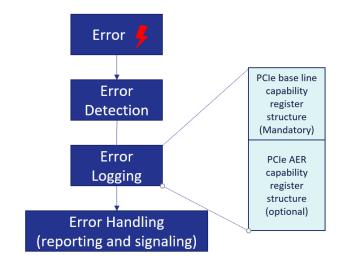
Safety Goal

• Definition of safe state

Functional safety requirements derived from safety goal

Avoid, detect, or control failure modes leading to incorrect data

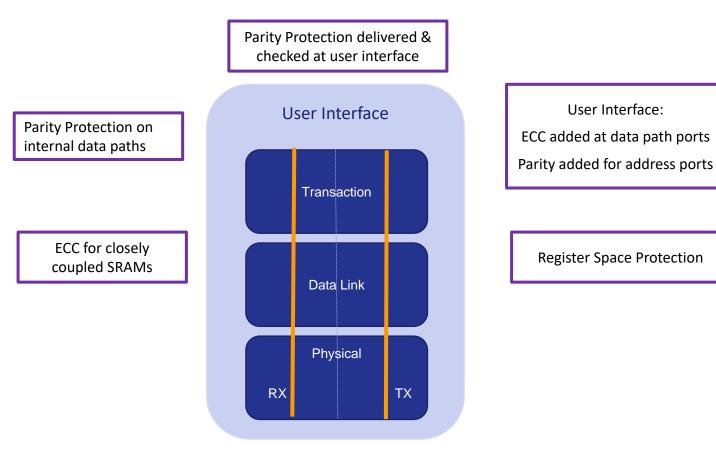

PCIe error logging and handling on a typical SoC


Avoid

• Data reliability trough ECRC and LCRC

Detect/control

- Advanced error reporting:
 - By completion status field: completer (EP or RC) reports errors to the requester (EP or RC)
 - By error message transactions: reporting errors to the host/RC.


PCle[®] Technology and Additional Safety Mechanisms to meet ASIL B and Beyond

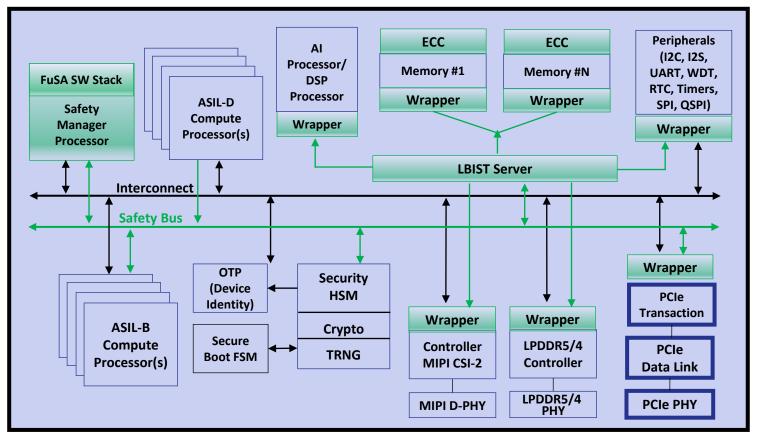
PCI EXPRESS[®] FOR AUTOMOTIVE FUNCTIONAL SAFETY (FUSA)

Parity & ECCFlow Control

□ Self-test

PCIe[®] Technology and Additional Safety Mechanisms ^{(sig}) to Meet ASIL B and Beyond: Parity and ECC

 Safety Mechanisms to achieve ASIL B Random HW Fault metrics

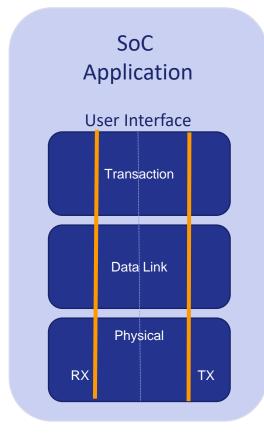

PCI

- Permanent and Transients faults
- Each Safety Mechanism has an associated Reaction Time: Fault Handling Time Interval and Error Flag

PCIe[®] Technology and Additional Safety Mechanisms

Implement SoC Level Self-test e.g. LBIST

- Safety Manager monitors & manages all system failures & real-time faults; safe boot & mission-mode testing
- LBIST test all memory, logic & analog/mixed-signal circuitry
- Efficient management of critical security functions: secure boot, key management and cryptography



PCI

Managing SoC Level PCle[®] FuSa

- PCIe application should monitor the safety interrupt outputs
 - Implement an <u>application specific</u> safe state transition scheme
- Respond to potential failure modes of the PCIe function
 - Based on each safety mechanism
 - Based on Safety Goal Violations
- Plan how the PCIe function responds to
 - Permanent HW faults e.g. perform reset
 - Transient faults: data correction or PCIe data replay

PCI Express[®] for Automotive Functional Safety (Fusa)

- PCIe Widely used in Safety Critical Automotive applications
- Compliance to ISO 26262 Functional Safety is required by automakers and Tier 1s
 - Development to identity/correct to Random HW Faults: Permanent & Transient
 - Development according to ISO 26262 ASIL Systematic
- PCIe Performance and scalability ideal for automotive SoCs & Systems

Q&A

Thank you for attending the second entry in the PCI-SIG[®] Automotive Webinar series.

Information about upcoming webinars will be available soon.

For more information, please visit www.pcisig.com