PCI Express® 6.0
Specification at 64.0 GT/s
with PAM-4 signaling: a Low
Latency, High Bandwidth,
High Reliability and
Cost-Effective Interconnect

Debendra Das Sharma

Intel Fellow, Director of I/O Technology and Standards, Intel Corporation

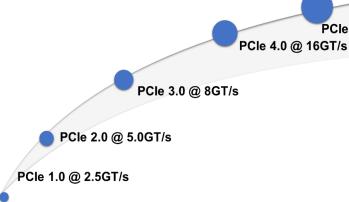
PCI-SIG Board Member

Hot Interconnects 2020

Disclaimer

 The information in this presentation refers to specifications still in the development process. This presentation reflects the current thinking of various PCI-SIG® workgroups, but all material is subject to change before the specifications are released.

Agenda


- Introduction to PCI Express[®] Specification
- Key Metrics and Requirements for PCIe® 6.0 Architecture
- PAM-4 and Error Assumptions / Characteristics
- PCIe 6.0 Specification Approach to Error Handling: FEC and CRC + Retry
- Flit Mode in PCIe 6.0 Specification
- Low Power enhancements: L0p
- Performance and Reliability results
- Conclusions

Evolution of PCI Express Specification

PCIe 6.0 @ 64GT/s

PCle 5.0 @ 32GT/s

- PCIe technology doubles the data rate every generation with full backward compatibility every 3 years
- Ubiquitous I/O across the compute continuum: PC, Hand-held, Workstation, Server, Cloud, Enterprise, HPC, Embedded, IoT, Automotive, Al
- One stack / same silicon across all segments with different form-factors, widths (x1/ x2/ x4/ x8/ x16) and data rates: e.g., a x16 PCle 5.0 specification interoperates with a x1 PCIe specifciation!

PCle Specification	Data Rate(Gb/s) (Encoding)	x16 B/W per dirn**	Year
1.0	2.5 (8b/10b)	32 Gb/s	2003
2.0	5.0 (8b/10b)	64 Gb/s	2007
3.0	8.0 (128b/130b)	126 Gb/s	2010
4.0	16.0 (128b/130b)	252 Gb/s	2017
5.0	32.0 (128b/130b)	504 Gb/s	2019
6.0 <u>(WIP)</u>	64.0 (PAM-4, Flit)	1024 Gb/s (~1Tb/s)	2021*

^{* -} Projected ** - bandwidth after encoding overhead

PCIe specifications continue to deliver bandwidth doubling for six generations spanning 2 decades! An impressive run!

PCle®: One Base Specification – Multiple Form Factors

BGA

16x20 mm small and thin platforms **M.2**

42, 80, and 110mm Smallest footprint of PCIe connector form factors, use for boot or for max storage density U.2 2.5in (aka SFF-8639)

Majority of SSDs sold
Ease of deployment, hotplug,
serviceability
Single-Port x4 or Dual-Port x2

CEM Add-in-card

Add-in-card (AIC) has maximum system compatibility with existing servers and most reliable compliance program. Higher power envelope, and options for height and length

High B/W with PCIe 3.0 Prevalent in hand-held, IoT, automotive

Source: Intel Corporation

(SFF TA 1006 – SSD)

(Up to 36 Modules)

(SFF TA 1007 – SSD)

(Up to 32 Modules)

Multiple form factors from the same silicon to meet the needs of different segments

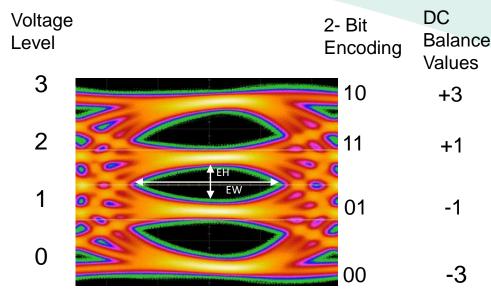
Bandwidth Drivers for PCle® 6.0 Specification

(New Usage Models: Cloud, Al/ Analytics, Edge)

- Device side: Networking (800G in early 2020s), Accelerators, FPGA/ ASICs, Memory
- Alternate Protocols on PCIe technology
- As the per socket compute capability grows at an exponential pace, so does I/O needs – we have already added a lot of Lanes per socket (currently 128 Lanes) => speed has to go up
- But ... we need to meet the cost, performance, power metrics as an ubiquitous I/O with hundreds of Lanes in a platform

New usage models are driving bandwidth demand – doubling every three years

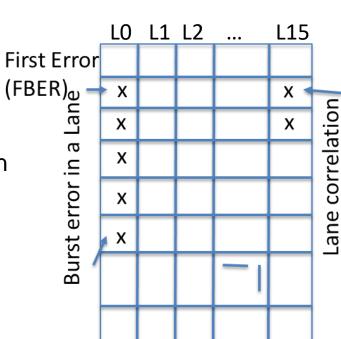
Key Metrics for PCIe 6.0 Specification: Requirements


Metrics	Requirements
Data Rate	64 GT/s, PAM4 (double the bandwidth per pin every generation)
Latency	<10ns adder for Transmitter + Receiver over 32.0 GT/s (including FEC) (We can not afford the 100ns FEC latency as networking does with PAM-4)
Bandwidth Inefficiency	<2 % adder over PCIe 5.0 across all payload sizes
Reliability	0 < FIT << 1 for a x16 (FIT – Failure in Time, number of failures in 109 hours)
Channel Reach	Similar to PCIe 5.0 specification under similar set up for Retimer(s) (maximum 2)
Power Efficiency	Better than PCIe 5.0 specification
Low Power	Similar entry / exit latency for L1 low-power state Addition of a new power state (L0p) to support scalable power consumption with bandwidth usage without interrupting traffic
Plug and Play	Fully backwards compatible with PCIe 1.x through PCIe 5.0
Others	HVM-ready, cost-effective, scalable to hundreds of Lanes in a platform

Need to make the right trade-offs to meet each of these metrics!

PAM-4 Signaling at 64.0 GT/s

- PAM-4 signaling: Pulse Amplitude Modulation 4-level
 - 4 levels (2 bits) encoded in same Unit Interval (UI)
 - 3 eyes
 - Helps channel loss (same Nyquist as 32.0 GT/s)
- Reduced voltage levels (EH) and eye width increases susceptibility to errors – 3 eyes in same UI
- Gray Coding to help minimize errors in UI
- Precoding to minimize errors in a burst
- Voltage levels at Tx and Rx define encoding



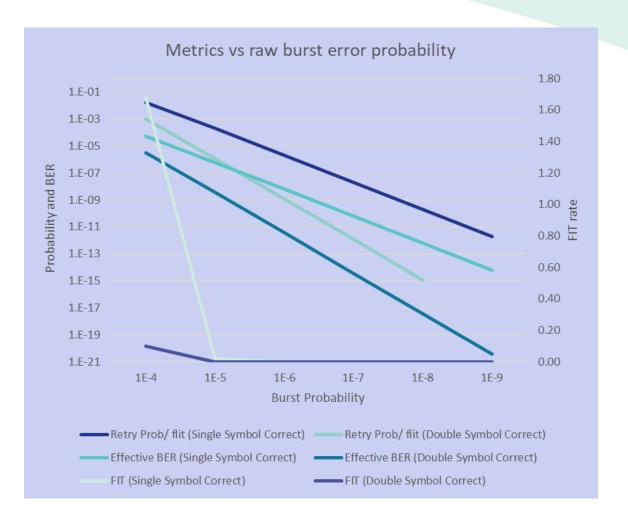
Encoding per UI (2bit)	Tx Voltage	Rx Voltage (V)
00	-Vtx	V <= Vth1
01	-Vtx/3	Vth1 < V <= Vth2
11	+Vtx/3	Vth2 < V <= Vth3
10	+Vtx	V > Vth3

Error Assumptions and Characteristics with PAM-4

Parameters of interest: FBER and error correlation within Lane and across Lanes

- FBER First bit error rate
 - Probability of the first bit error occurring at the Receiver
- Receiving Lane may see a burst propagated due to DFE
 - The number of errors from the burst can be minimized.
 - Constrain DFE tap weights balance TxEQ, CTLE and DFE equalization
- Correlation of errors across Lanes
 - Due to common source of errors (e.g., power supply noise)
 - Conditional probability that a first error in a Lane => errors in nearby Lanes
- BER depends on the FBER and the error correlation in a Lane and across Lanes

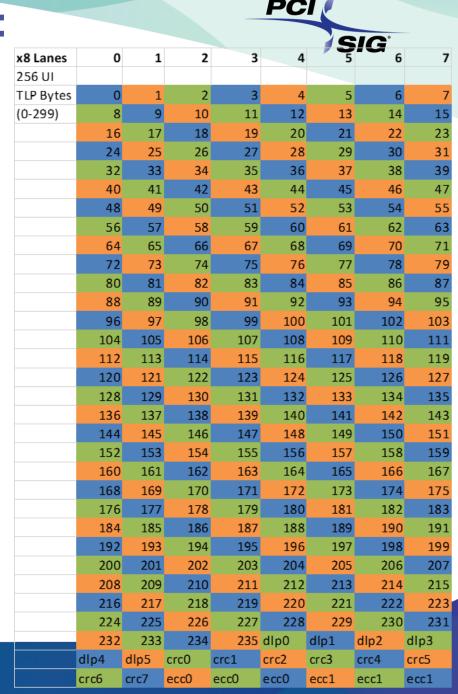
Handling Errors and Metrics Used for Evaluation


- Two mechanisms to correct errors
 - Correction through FEC (Forward Error Correction)
 - Latency and complexity increases exponentially with the number of Symbols corrected
 - Detection of errors by CRC => Link Level Retry (a strength of PCIe architecture)
 - Detection is linear: latency, complexity and bandwidth overheads
 - Need a robust CRC to keep FIT << 1 (FIT: Failure in Time No of failures in 10⁹ hours)
- Metrics: Prob of Retry (or b/w loss due to retry) and FIT
- Need to use both means of correction to achieve:
 - Low latency and complexity
 - Retry probability at acceptable level (no noticeable performance impact)
 - Low Bandwidth overhead due to FEC, CRC, and retry

Need to keep FEC correction latency low (2ns) to meet the performance needs of Load/Store I/O

Our Approach: Light-weight FEC and Retry

- Light-weight FEC, strong CRC, and keep the overall latency (including retry) low so that the Ld/St applications do not suffer latency penalty
- We are better off retrying a packet with 10⁻⁶ (or 10⁻⁵) probability with a retry latency of 100ns vs having a FEC latency impact of 100ns with a much lower retry probability



Low latency mechanism w/ FBER of 1E-6 to meet the metrics (latency, area, power, bandwidth)

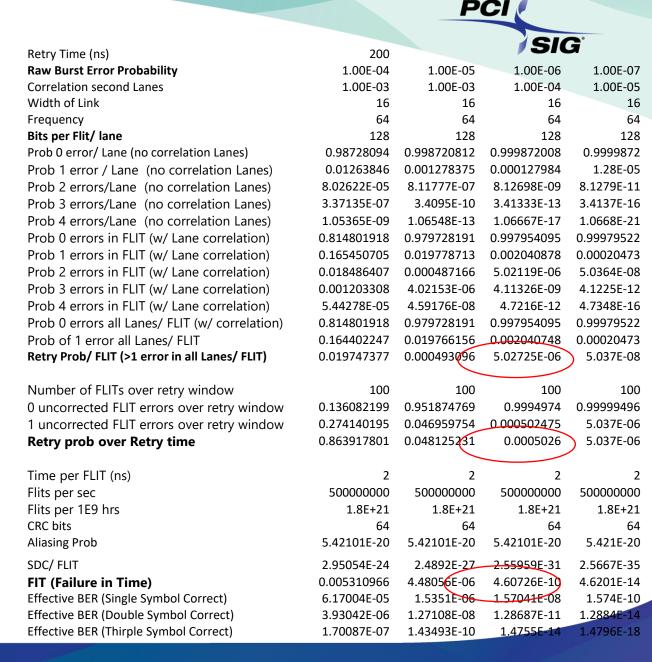
FLIT Encoding PCle® 6.0 Specification: Low-Latency with High Efficiency

- <u>FLIT</u> (flow control unit) based: FEC needs fixed set of bytes
- Correction in FLIT => CRC (detection) in FLITs => Retry at FLIT level
- Lower data rates will also use the same FLIT once enabled
- FLIT size: 256B
 - 236B TLP, 6B DLP, 8B CRC, 6B FEC
 - No Sync hdr, no Framing Token (TLP reformat), no T(DL)LP CRC
 - Improved bandwidth utilization due to overhead amortization
 - FLIT Latency: 2ns x16, 4ns x8, 8 ns x4, 16 ns x2, 32 ns x1
 - Guaranteed Ack and credit exchange => low latency, low storage
- Optimization: Retry error FLIT only with existing Go-Back-N retry

Low latency improves performance and reduces area

Retry Probability and FIT vs FBER/ Correlation

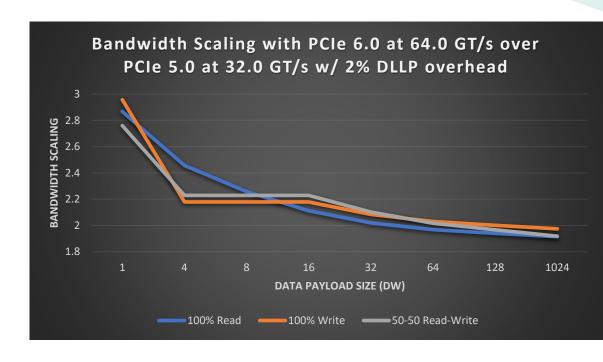
- Single Symbol Correct interleaved FEC plus 64-b CRC works really well for raw FBER of 1E-6 even with high Lane correlation
 - Retry probability per flit is 5 x 10⁻⁶
 - B/W loss is 0.05% even with go-back-n
 - FIT is almost 0.
 - Can mitigate the bandwidth loss significantly by adopting retry only the non-NOP TLP flit


DEIN Colletat			•	
Retry Time (ns)	200		/SIC	j –
Raw Burst Error Probability	1.00E-04	1.00E-05	1.00E-06	1.00E-07
Correlation second Lanes	1.00E-03	1.00E-03	1.00E-04	1.00E-05
Width of Link	16	16	16	16
Frequency	64	64	64	64
Bits per Flit/ lane	128	128	128	128
Prob 0 error/ Lane (no correlation Lanes)	0.98728094	0.998720812	0.999872008	0.9999872
Prob 1 error / Lane (no correlation Lanes)	0.01263846	0.001278375	0.000127984	1.28E-05
Prob 2 errors/Lane (no correlation Lanes)	8.02622E-05	8.11777E-07	8.12698E-09	8.1279E-11
Prob 3 errors/Lane (no correlation Lanes)	3.37135E-07	3.4095E-10	3.41333E-13	3.4137E-16
Prob 4 errors/Lane (no correlation Lanes)	1.05365E-09	1.06548E-13	1.06667E-17	1.0668E-21
Prob 0 errors in flit (w/ Lane correlation)	0.814801918	0.979728191	0.997954095	0.99979522
Prob 1 errors in flit (w/ Lane correlation)	0.165450705	0.019778713	0.002040878	0.00020473
Prob 2 errors in flit (w/ Lane correlation)	0.018486407	0.000487166	5.02119E-06	5.0364E-08
Prob 3 errors in flit (w/ Lane correlation)	0.001203308	4.02153E-06	4.11326E-09	4.1225E-12
Prob 4 errors in flit (w/ Lane correlation)	5.44278E-05	4.59176E-08	4.7216E-12	4.7348E-16
Prob 0 errors all Lanes/ flit (w/ correlation)	0.814801918	0.979728191	0.997954095	0.99979522
Prob of 1 error all Lanes/ flit	0.164402247	0.019766156	0.002040748	0.00020473
Retry Prob/ flit (>1 error in all Lanes/ flit)	0.019747377	0.000493096	5.02725E-06	5.037E-08
Number of flits over retry window	100	100	100	100
0 uncorrected flit errors over retry window	0.136082199	0.951874769	0.9994974	0.99999496
1 uncorrected flit errors over retry window	0.274140195	0.046959754	0.000502475	5.037E-06
Retry prob over Retry time	0.863917801	0.048125231	0.0005026	5.037E-06
Time per flit (ns)	2	2	2	2
Flits per sec	50000000	500000000	500000000	500000000
Flits per 1E9 hrs	1.8E+21	1.8E+21	1.8E+21	1.8E+21
CRC bits	64	64	64	64
Aliasing Prob	5.42101E-20	5.42101E-20	5.42101E-20	5.421E-20
SDC/ flit	2.95054E-24	2.4892E-27	2.55959E-31	2.5667E-35
FIT (Failure in Time)	0.005310966	4.4805 6 E-06	4.60726E-10	4.6201E-14
Effective BER (Single Symbol Correct)	6.17004E-05	1.5351E- 06	1 57041E-08	1.574E-10
Effective BER (Double Symbol Correct)	3.93042E-06	1.27108E-08	1.28687E-11	1.2884E-14
Effective BER (Thirple Symbol Correct)	1.70087E-07	1.43493E-10	1.4755E-14	1.4796E-18

FBER 1E-6 meets the performance goals with a light-weight FEC

Retry Probability and FIT vs. FBER/ Correlation

- Single Symbol Correct interleaved FEC plus 64-b CRC works really well for raw FBER of 1E-6 even with high Lane correlation
 - Retry probability per FLIT is 5 x 10⁻⁶
 - B/W loss is 0.05% even with go-back-n
 - FIT is almost 0
 - Can mitigate the bandwidth loss significantly by adopting retry only the non-NOP TLP FLIT


FBER 1E-6 meets the performance goals with a light-weight FEC

PCle® 6.0 FLIT Mode Bandwidth at 64.0 GT/s

- Bandwidth increase = 2X (BW efficiency of FLIT mode) / (BW efficiency in non-FLIT mode)
- Overall we see a >2X improvement in bandwidth (benefits most systems)
 - Efficiency gain reduces as TLP size increases
 - Beyond 512 B (128 DW) payload goes below 1
- Bandwidth efficiency improvement in FLIT mode due to the amortization of CRC, DLP, and ECC over a FLIT (8% overhead) – works out better than sync hdr, DLLP, Framing Token per TLP, and 4B CRC per TLP overheads in PCle 5.0

Bandwidth Efficiency improvement causes > 2X bandwidth gain for up to 512B Payload in 64.0 GT/s FLIT mode

- FLIT accumulation in Rx only (Tx pipeline)
- FEC + CRC delay expected to be ~ 1-2 ns
- Expected Latency savings due to removal of sync hdr, fixed FLIT sizes (no framing logic, no variable sized TLP/ CRC processing) is not considered in Tables here
- With twice the data rate and the above optimizations, realistically expect to see lower latency except for x2 and x1 for smaller payload TLPs –worst case ~10ns adder

Data Size (DW)	TLP Size (DW)		in Flit Mode @ L	(X1 Link) atency Increase due accumulation (ns)	Data Size (DW)	TLP Size	for 128b/130b		(X16 Link) Latency Increase due to accumulation (ns)
	0 4	6.09375	18	11.90625	C	4	0.380859375	1.125	0.744140625
	4 8			9.84375		8	0.634765625	1.25	0.615234375
	8 12	14.21875	22	7.78125	8	12	0.888671875	1.375	0.486328125
1	6 20	22.34375	26	3.65625	16	20	1.396484375	1.625	0.228515625
3	2 36	38.59375	34	-4.59375	32	36	2.412109375	2.125	-0.287109375
6	4 68	71.09375	50	-21.09375	64	68	4.443359375	3.125	-1.318359375
12	8 132	136.09375	82	-54.09375	128	132	8.505859375	5.125	-3.380859375
25	6 260	266.09375	146	-120.09375	256	260	16.63085938	9.125	-7.505859375
51	2 516	526.09375	274	-252.09375	512	516	32.88085938	17.125	-15.75585938
102	4 1028	1046.09375	530	-516.09375	1024	1028	65.38085938	33.125	-32.25585938

Meets or exceeds the latency expectations

Motivation for a New Low Power State DSP

X16 Link

- Existing low-power states: L0s, L1, Dynamic Link Width (DLW), Speed Change
 - Served well for the set of usages so far and will continue
- Increasingly there is demand for power consumption scaling with bandwidth usage without impacting traffic flow
- Solution: New state L0p symmetric
 - Maintain at least one active Lane they continue to carry traffic. Link still carries traffic during L0p width transition
 - Expect L0p PHY power savings similar to turning off power for the idle Lanes

L0p Support Query (L0p Enabled) L0p Request x8 L0p Request Ack (x8) (Handshake: Lane 8-15 go electrically idle while Traffic flows in Lanes 0-7) (8 active lanes and 8 Lanes in EI) _0p Request x16 L0p Request x4 (Handshake: Lane 8-15 retrain while traffic flows in Lanes 0-7; eventually Lanes 8-15 merge with Lanes 0-7 to carry traffic) (16 active Lanes)

L0p enables power consumption proportionate to bandwidth usage without interrupting traffic flow

Key Metrics for PCIe 6.0 Specification: Evaluation **Based on Current Trend**

Metrics	Expectations	Evaluation (Trend)
Data Rate	64 GT/s, PAM4 (double the bandwidth per pin every generation)	Meets (must do)
Latency	<10ns adder for Transmitter + Receiver over 32.0 GT/s (including FEC) (We can not afford the 100ns FEC latency as n/w does with PAM-4)	Exceeds (Savings in latency with <10ns for x1/ x2 cases)
Bandwidth Inefficiency	<2 % adder over PCIe 5.0 across all payload sizes	Exceeds (getting >2X bandwidth in most cases)
Reliability	0 < FIT << 1 for a x16 (FIT – Failure in Time, failures in 10 ⁹ hours)	Meets
Channel Reach	Similar to PCIe 5.0 specification under similar set up for Retimer(s) (maximum 2)	Meets
Power Efficiency	Better than PCIe 5.0 specification	Design dependent – expected to meet
Low Power	Similar entry/ exit latency for L1 low-power state Addition of a new power state (L0p) to support scalable power consumption with bandwidth usage without interrupting traffic	Design dependent – expected to meet; L0p looks promising
Plug and Play	Fully backwards compatible with PCIe 1.x through PCIe 5.0	Meets
Others	HVM-ready, cost-effective, scalable to hundreds of Lanes in a platform	Expected to Meet

On track to meet or exceed requirements on all key metrics

Conclusions

- PCIe® 6.0 specification is at Rev 0.5 level; Rev 0.7 is in progress
- Several Areas of Focus:
 - New signaling with PAM-4: tradeoff around errors/ correlation, channels, performance/ area, and circuit complexity to double the bandwidth
 - Metrics (latency, bandwidth efficiency, area, cost, power) which are significantly more challenging than what other standards have done with PAM-4 at lower speeds
 - e.g., 100+ ns FEC latency on other standards vs our single digit ns latency targets; 12+% bandwidth inefficiency in other standards vs <2% inefficiency targets for us)
 - We are on track to exceed or meet the requirements
 - Need to continue to do due diligence though analysis, simulations, and test silicon characterization to ensure we have a robust specification
 - We have the combined innovation capability of 800+ members with a track record of delivering flawlessly against challenges for more than two decades we will deliver this time also!!
- Consider joining PCI-SIG® if you have not done so; be a part of this exciting journey and use PCI PHY for other applications