PCI Express® Technology: Accelerating Automotive Connectivity, from Infotainment to ADAS

August 16-18, 2021

San Jose McEnery Convention Center | San Jose, CA

PCI Express® Technology: Accelerating Automotive Connectivity, from Infotainment to ADAS

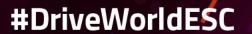
Tom Wong, Cadence Arif Khan, Cadence

Authors:

Tom Wong, Arif Khan, Gopi Krishnamurthy Cadence

Topics

- Automotive Trends and Implications for SoC Design
- New Automotive SoC Segments
- PCle® in Automotive Applications
- Use Cases
- Examples of Commercial Chips
- Summary


Automotive Trends and Implications

Major Forces Shaping the Automotive Industry

Growth of Autonomous Driving

Increased Connectivity

Vehicle Electrification

Shared Mobility

Aka smart sharing

- ADAS deployment
- Level 3 in 2019
- Level 4 by 2020~2025
- Security challenges

- Multiple connectivity Telematics services
- V2X (4G/LTE → 5G)

Some barriers

- High battery costs
- Proliferation of charging infrastructure
- Wireless charging

- Uber
- Lyft,
- Turo, etc.

Major Forces Shaping the Automotive Industry

Growth of Autonomous Driving

Increased Connectivity

Vehicle Electrification

Shared Mobility

- Some darity on

- Some barriers

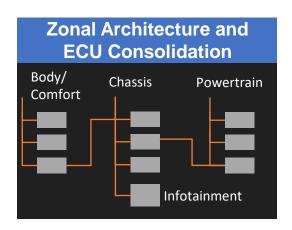
- Uber
- Lyft,
- reliability Turo, et

What Are These Trends Telling Us?

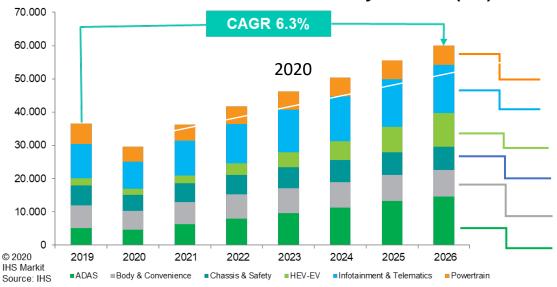
- New use cases
 - IVI, digital cockpit, DMS
 - ACC, AEB, ADAS, ADS
 - OTA, V2x . . .
- More chips, more integration, more custom
- Use of more advanced process nodes
 - 16nm, 7nm, 5nm . . .
- More compute intensive
 - Sensor fusion, DSP, AI
- More data
 - Collection, analysis, edge AI
- More software (a lot more)

- New architecture
 - Heterogeneous SoC
 - NoC (memory coherency)
 - MCU, domain and zonal transition (IVN)
- Higher speed memories
 - LPDDR5X, GDDR6, HBM2e
- Higher speed (connectivity) interfaces
 - PCIe® 3.0/4.0/5.0/6.0
- Larger storage
- More internet connectivity
 - Wi-Fi, 4G/5G, cellular v2x, DSRC
- More security

#DriveWorldESC



Automotive Market and Key Trends



CAGR: 4.6% (2021) – Total semiconductor revenue

CAGR: 11.9% (2021) – Auto semiconductor revenue!

-1 % - Powertrain

5 % - Infotainment: Connectivity and Telematics

25 % - HEV-EV

2 % - Chassis and Safety

2 % - Body and Convenience

16 % - ADAS: Part. Camera, Radar, Lidar Sensors

New SoCs Adopting Advanced Process Nodes

Chassis, Powertrain, Body	Infotainment	ADAS	ADS
Active suspension, ABS, Engine control	Digital cockpit and driver monitoring	Advanced driver- assistance system (L1~L3)	Autonomous driving system (L4~L5)
Mature foundry process (90nm, 65nm, and specialty process)	Mature foundry process (28nm, 16nm → 7nm)	Advanced foundry process (16nm → 7nm)	Advanced foundry process (7nm → 5nm)

New Automotive SoC Segments

AUG 16-18, 2021

New Automotive SoC Segments

- Infotainment and digital cockpit (including driver monitoring)
- ADAS (sensor fusion camera, radar, lidar, ultrasound)
- Autonomous driving (L4/L5, ML/AI)
- Telematics (Wi-Fi, BT, C-V2X, GPS)
- Cloud connectivity (OTA, e-commerce)

Infotainment SoC

CPU

GPU

Audio Processing

Video Processing

LPDDR4/4X/5/5X

MIPI D-PHY

PCIe 3.0/4.0

Flash I/F

Q-SPI

USB2/3

Table-stake IP in infotainment SoC

- Multi-core CPU
- GPU
- Advanced memory
- MIPI®
- PCIe® 3.0/4.0
- Storage interface
- USB2/3
- GbE

An infotainment chip looks very much like a ruggedized applications processor for smartphones!

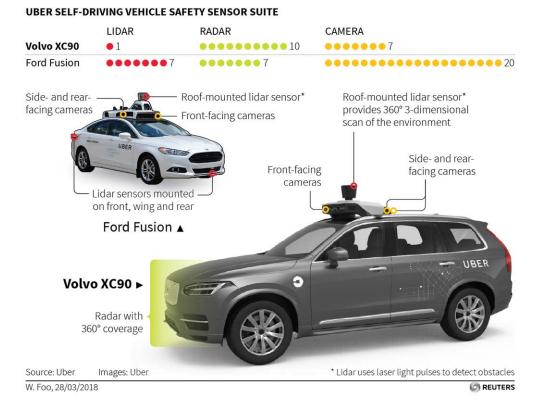
From ADAS to Conditional Automation (Level 3)

Level 0

Level 1

We Are Here!

Level 3


Function	Manual Cruise Ctrl	Traffic Sign Detection	Adaptive Cruise Control	Highway Chaffeur
Features	Manual set of fixed speed No detection of environment	Camera-based traffic sign detection Manual control of speed	Camera-based traffic sign detection Automatic control of speed and distance	Lane keeping and change 360° surround view of traffic, driver monitoring Legal issues
Sensor/ECU	No sensors 1x ECU	1x front camera 1x ADAS ECU	1x front camera 1x front radar 1x ADAS ECU	2x front/rear cameras 1x front lidar 1x infrared camera 6x front/rear radars 1x gateway 1x sensor fusion ECU 1x GPS, IMU, DMS

Autonomous Vehicles – Supercomputer on Wheels

Evolution of Automated Driving Platforms

TOPS / Watt

0.25TOPS @ 2.5W

<1TOPS

20TOPS @ 250W

60TOPS

320TOPS

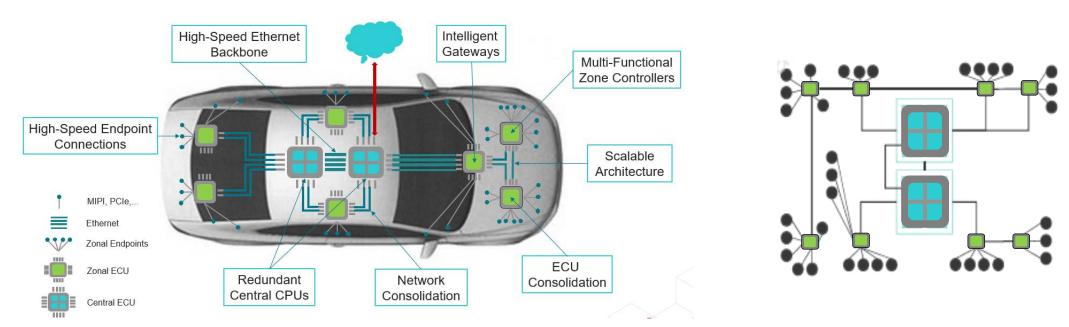
Mobileye	Audi	NVIDIA	Renesas	NVIDIA	Tesla
EyeQ3	zFAS	Drive PX2	R-Car V3U	Drive PX Pegasus	FSD Computer
Black box	Proprietary	Open system	Open system	Open system	Proprietary
Standard components	Proprietary SoC				
HW + SW	HW	HW + ML env.	HW	HW + ML env.	HW + SW + ML env.
Air cooling	Air cooling	Water cooling	Air cooling	Water cooling	Air cooling

Perception from Vision, Radar, and Lidar Sensors Are Combined

Vision Radar Lidar

AV Estimates Path of Surrounding Cars and Pedestrians

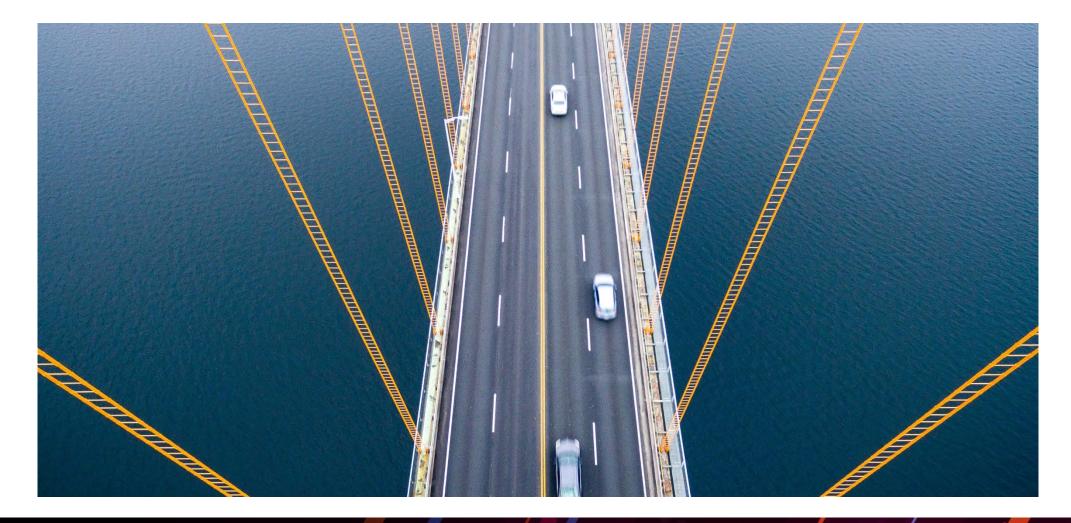
Path Planning



E/E Architecture Evolving to Domain and Zonal Network

PCI Express® technology is mission critical in Domain and Zonal Network

- Already adopted in multiple generations of infotainment and ADAS SoC
- Key protocol in chip-to-chip communications, central processing and highspeed end point connections



PCI Express® Architecture in Automotive Applications

PCle® Technology – A Ubiquitous Interface, Applied to **Automotive**

Empowering next generation of data intensive autonomous driving designs

Built on the state of the art 96-layer 3D NAND and leveraging the NVMe architecture to provide unmatched performance in automotive industry for years to come. The IX SN530 family is designed to support break through innovation development from the latest safety and driver assistance systems to autonomous driving.

https://www.westerndigital.com/products/commercial-internal-drives/automotive-ix-sn530-nvme-ssd

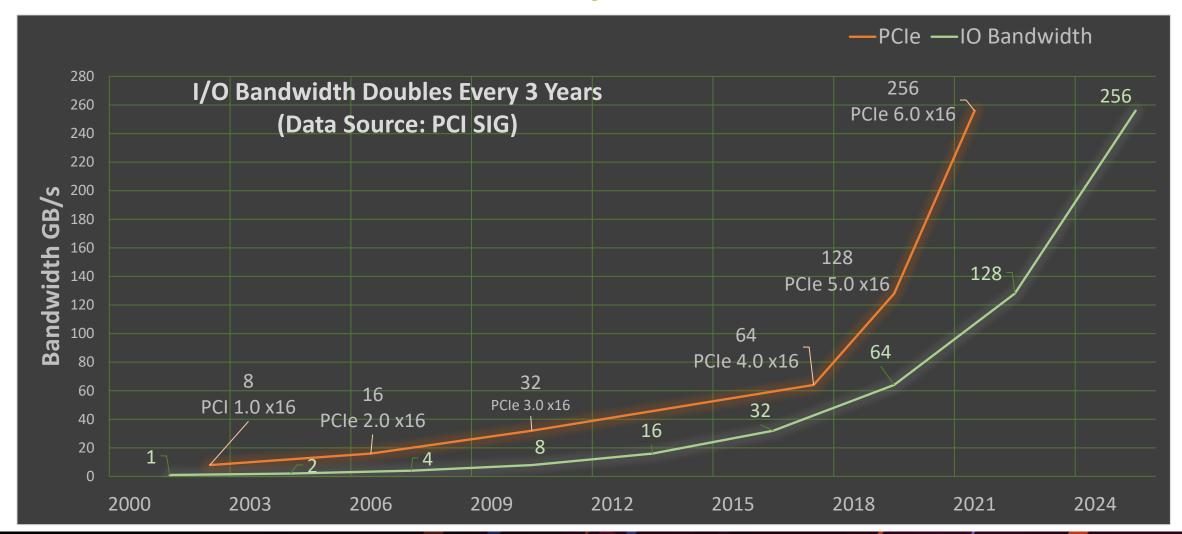

STORAGE

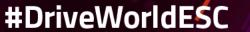
The Role of PCIe NVMe Industrial SSDs

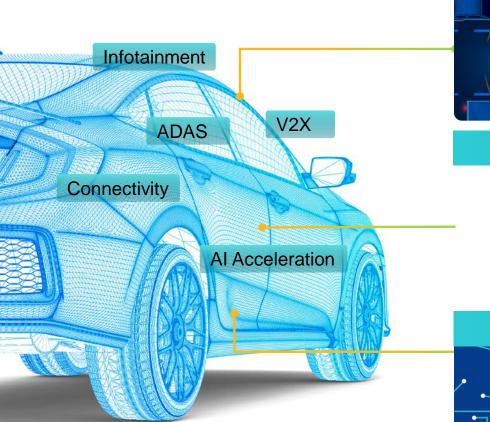
By Taufique Ahmed - 2018-12-19

At Electronica Munich 2018, Micron officially launched the Micron 2100Al/AT-an industrial- and automotive-grade PCIe NVMe Industrial SSD family based on 64layer triple-level cell (TLC) 3D NAND technology. Available in 64GB-1TB BGA and 256GB-1TB M.2 form factors, the new 2100Al/AT series is Micron's first offering with a PCle interface supporting the NVMe protocol that is designed to address the needs of the industrial segment: longevity, reliability, quality, ruggedness, and application-specific features such as namespace, autonomous power transitions, and boot emulation.

https://in.micron.com/about/blog/2018/december/the-role-of-pcie-nvme-industrial-ssds




Standard Has Headroom for I/O Bandwidth Needs



Automotive Applications Meet PCIe® Technology

SYSTEMS

Compute Performance

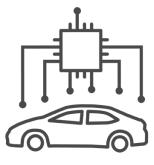
High bandwidth, scalable applications

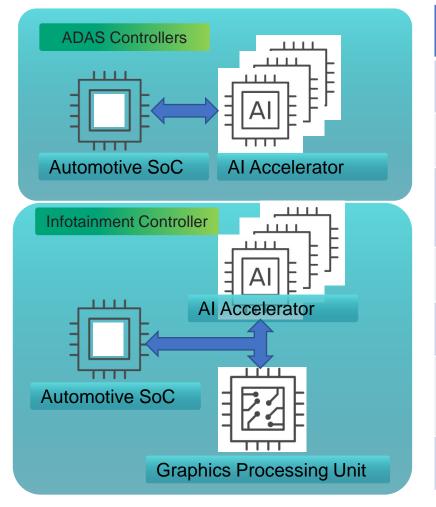
System Performance

Latency, virtualization, scalability, security reach, functional safety, storage

Silicon Performance

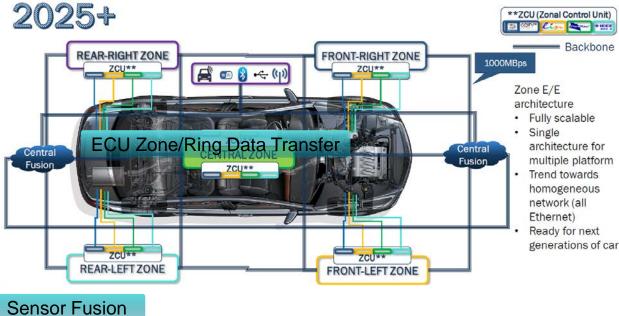
Power and thermal requirements
Silicon reliability in advanced process nodes





Compute Drivers

Requirement	PCle Support
Bandwidth	Architecture version/Lane combination
Scalability	Configurable number of lanes
Low latency	Protocol timers and implementation dependencies
Virtualization	SR-IOV
Power management	ASPM, DPA, L1 substates, etc.
Security/trusted environments	IDE/DOE, ADISP
Functional Safety (FuSa)	Implementation specific



PCIe® Technology as the Data Backbone

ECU Processing Redundancy

Requirement	PCle Support
Bandwidth (5-40Gbps)	Architecture version/Lane combination
Low latency	Protocol timers and implementation dependencies
Long reach	Standard and implementation (EMC/EMI, reliability)
Security/trusted environments	IDE/DOE, ADISP
Functional Safety (FuSa)	Implementation

Source: ON Semi webinar, 5/2021

Storage Evolves Towards PCIe® SSDs

Blackbox Recorder

Cockpit Infotainment

Mapping Data

Central Processing

Requirements		
High Endurance	Very Low Latency	Very High Density
Lifetime > 15 years	High bandwidth	Fast boot, fast startup
High temp data retention (Automotive Grade 1 and/or Grade 2)	Guaranteed minimum performance for writes	Virtualization capabilities

PCIe®/NVMe SSDs Are Widely Used as Storage Solutions

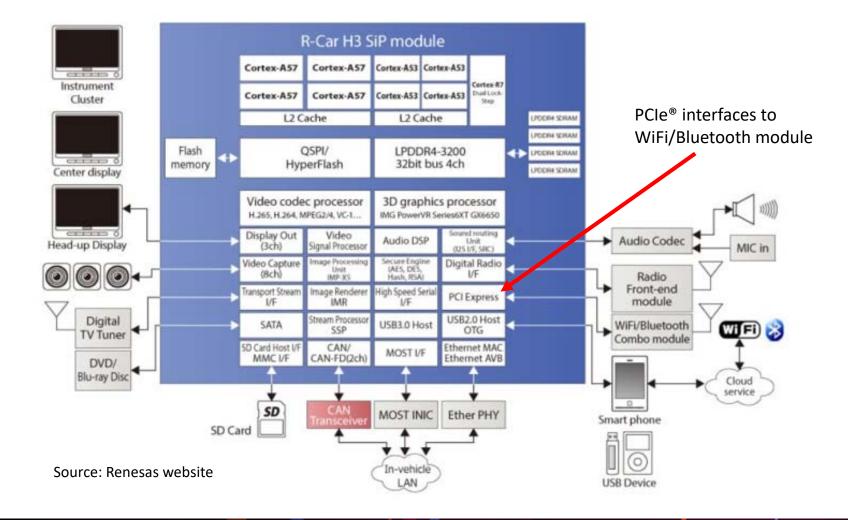
PCIe RAS Features	Link CRC, ACK/NAK, Replay ACK/NAK timeouts End to End CRC
Power	L1 substates
Clocking	SRIS

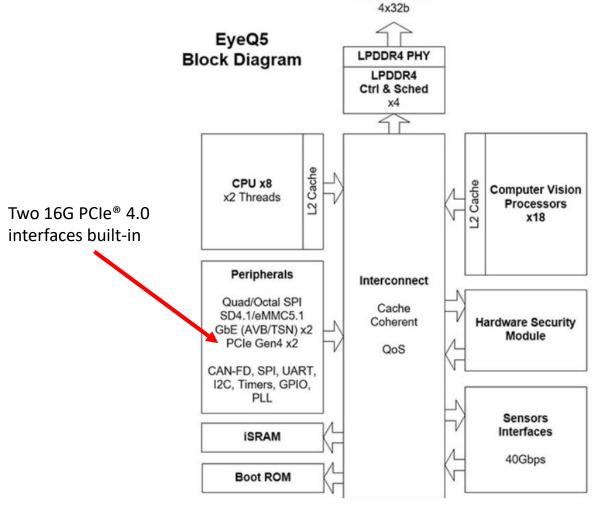
Connectivity Applications with PCIe® Technology

Requirement	PCle Support
Scalable bandwidth	Architecture version/Lane combination
Low latency	Protocol timers and implementation dependencies
Long reach	Standard and implementation (EMC/EMI, reliability)
Security/trusted environments	IDE/DOE, ADISP
Functional Safety (FuSa)	Implementation dependent

Stringent Automotive Requirements

- Standardization
 - Well-defined roadmap for protocol
 - Commercial (long-term) availability from diverse suppliers
 - Interoperability
- Certification and qualification for harsher environments and functional safety
 - AEC- Q100/ISO 26262 processes
 - EMC/EMI requirements
 - Temperature and mechanical
- Safety and security
 - End to end measures
 - Regulatory compliance
- Lifetime
 - Aging requirements
 - Long-term availability, migration, upgrades
 - Backwards/forward compatibility


Commercial Automotive SoC Examples


Infotainment SoC

ADAS SoC

LPDDR4-4267

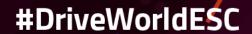
Source: Mobileye website

PCIe® Architecture Addresses Advanced Automotive SoC Needs

Established standards body, vibrant ecosystem, strong technical leadership

AUG 16-18, 2021

- Protocol specification and implementation meet the segment needs
 - Bandwidth, scalability, latency, security, reach, reliability
- Compliance and certification
- Broad silicon, software, and IP provider base and ecosystem
- Automotive Working Group established in PCI-SIG® to continue work on this exciting new frontier!


Thank you!

QUESTIONS?

