The New Generation of Storage: From PCI Express® 4.0 to PCI Express 6.0

Dr. Debendra Das Sharma
PCI-SIG® Board Member
Intel Fellow and Director of I/O Technology and Standards
Intel Corporation
Agenda

- Introduction: Evolution of PCI Express® Technology
- PCI Express and Storage
- Form Factors
- Compliance
- Conclusions
PCI-SIG® Snapshot

Organization that defines the PCI Express® (PCIe®) I/O bus specifications and related form factors.

800+ member companies located worldwide.

Creating specifications and mechanisms to support compliance and interoperability.

PCI-SIG member companies support the following usages with PCIe:

- Virtual reality
- Automotive
- Artificial intelligence
- Telecommunications
- Storage
- Consumer
- Mobile
- Data Center
Adoption is Well Under Way

- **Key Features:**
 - Data Rate 16 GT/s
 - Maintains full backwards compatibility with PCIe 3.x, 2.x, and 1.x
 - Implements:
 - Extended tags and credits
 - Reduced system latency
 - Lane margining
 - Superior RAS capabilities
 - Scalability for added lanes and bandwidth
 - Improved I/O virtualization and platform integration
 - Maximum channel loss is 28dB

- **Compliance Status:**
 - PCI-SIG Launched Official FYI Testing for PCIe 4.0 in December 2018
 - Formal Compliance testing targeted for Q3 2019

- **Adoption:**
 - Numerous vendors with 16GT/s PHYs and controllers in silicon
 - Test equipment from multiple vendors
 - Several member companies have publicly announced & exhibited PCIe 4.0 products
PCI Express® 5.0 Specification & Status

Published in May 2019

- **Key Features:**
 - Data Rate 32 GT/s
 - Maintains full backwards compatibility with PCIe 4.0, 3.x, 2.x, and 1.x
 - Maximum channel loss is 36dB
 - Electrical changes to improve signal integrity and mechanical performance of connectors
 - Advanced test and debug capabilities

- **Compliance Status:**
 - PCIe 5.0 compliance testing is under development

- **Adoption**
 - Several member companies have publicly announced and are showcasing PCIe 5.0 solutions and interoperable silicon
 - Adoption expected to grow in the next few months due to demand from high performance applications
PCI Express 6.0® Specification Targets
Aiming for completion in 2021

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>64 GT/s, PAM4 (Pulse Amplitude Modulation – 4 level signaling)</td>
</tr>
<tr>
<td>Latency</td>
<td>Low single-digit ns PHY adder w/ Forward Error Correction (FEC) for (Tx + Rx)</td>
</tr>
<tr>
<td>B/W Efficiency</td>
<td>Better than Gen 1-5 due to protocol enhancements even with FEC overhead</td>
</tr>
<tr>
<td>Reliability</td>
<td>0 < FIT << 1 (similar to Gen 5) [FIT: Failure In Time (10⁹ hours)]</td>
</tr>
<tr>
<td>Channel reach</td>
<td>Similar to Gen 5 (max 2 retimers)</td>
</tr>
<tr>
<td>Power Efficiency</td>
<td>Better than Gen 5 (ideally power neutral while delivering 2X b/w)</td>
</tr>
<tr>
<td>Low Power</td>
<td>L1 with entry/exit latency similar to Gen 5</td>
</tr>
<tr>
<td>Plug n Play</td>
<td>Backwards compatible with prior generations (Software, Silicon, and existing Form Factors)</td>
</tr>
<tr>
<td>Other for Gen6</td>
<td>High Volume Manufacturing, cost-effective, scales to hundreds of Lanes in a platform, simple to design and validate</td>
</tr>
</tbody>
</table>
I/O BANDWIDTH DOUBLES EVERY 3 YEARS

Time

- Actual Bandwidth (GB/S)
- I/O Bandwidth Doubles Every Three Years
One Interconnect—Infinite Applications

Artificial Intelligence
- High-performance
- High-bandwidth

Automotive
- High-performance
- Reliability
- Availability
- Serviceability

Cloud
- Scalable architecture
- Increased performance
- Reduced TCO

Enterprise Servers
- Redundancy/failover
- Ubiquity
- Power savings

PC/Mobile/IoT
- Faster performance
- Power efficiency
- Low latency

Storage
- Faster data transfer
- Better user experience
- Ubiquity
Agenda

- Introduction: Evolution of PCI Express Technology
- **PCle and Storage**
 - Form Factors
 - Compliance
 - Conclusions
PCI Express is a great interface for SSDs

• Stunning performance: 1 GB/s per lane/ direction (PCIe 3.0 x1) [2 (4) GB/s for PCIe 4.0 (5.0)]
• Lane scalability: 4 GB/s per device (PCIe 3.0 x4) [8 (16) GB/s for PCIe 4.0 (5.0)]
• Lower latency: Platform + Adapter: 10 µsec down to 3 µsec
• Lower power: No external SAS IOC saves 7-10 W
• Lower cost: No external SAS IOC saves $
• CPU-integrated PCIe lanes: Up to 128 PCIe 3.0

With Next Gen NVM, the NVM is no longer the bottleneck

Source: FMS 2013
"NVMe Express Overview & Ecosystem Update"
Growth of PCIe® Technology in Storage

- **Data explosion is driving SSD adoption**
 - SSD market CAGR of 14.8% during 2016-2021 *Source: IDC*
 - PCIe SSD market to surpass a CAGR of 33% during 2016-2020 *Source: Technavio*

- PCIe technology is outpacing other interconnect technologies in both units and bandwidth/capacity

Source: SSD Insights Q1/18, Forward Insights
PCle® Features useful for Storage

• Low-latency, High Bandwidth, Scalability, and predictable cadence of speed increase with backwards compatibility

• In addition, PCle technology offers the following value-add essential for storage
 • Reliability, Availability and Serviceability (RAS)
 • I/O Virtualization
 • Multitude of form factors including cabling support
RAS Features

- **PCIe® architecture supports a very high-level set of Reliability, Availability, Serviceability (RAS) features**
 - All transactions protected by CRC-32 and Link level Retry, covering even dropped packets
 - Transaction level time-out support (hierarchical)
 - Well defined algorithm for different error scenarios
 - Advanced Error Reporting mechanism
 - Support for degraded link width / lower speed
 - Support for hot-plug
DPC/ eDPC Motivation and Mechanism

- (enhanced) Downstream Port Containment (DPC and eDPC) for emerging usages
- Emerging PCIe usage models are creating a need for improved error containment/recovery and support for asynchronous removal (a.k.a. hot-swap)
- Defines an error containment mechanism, automatically disabling a Link when an uncorrectable error is detected, preventing potential spread of corrupted data
- Reporting mechanism with Software capability to bring up the link after clean up
- Transaction details on a timeout recorded (side-effect of asynchronous removal)
- eDPC: Root-port specific programmable response to gracefully handle DPC downstream
I/O Virtualization

- Reduces System Cost and power
- Single Root I/O Virtualization Specification
 - Released September 2007
 - Allows for multiple Virtual Machines (VM) in a single Root Complex to share a PCI Express* (PCIe*) adapter
- An SR-IOV endpoint presents multiple Virtual Functions (VF) to a Virtual Machine Monitor (VMM)
 - VF allocated to VM => direct assignment
- Address Translation Services (ATS) supports:
 - Performance optimization for direct assignment of a Function to a Guest OS running on a Virtual Intermediary (Hypervisor)
- Page Request Interface (PRI) supports:
 - Functions that can raise a Page Fault
- Process Address Space ID enhancement to support Direct assignment of I/O to user space
Inexpensive Cabling = Independent Clock + Spread Spectrum (SSC) (SRIS)

- **Challenge:** PCIe® specification did not support independent clock with SSC initially
 - SATA cable ~ $0.50
 - PCIe cables include reference clock > $1 for equivalent cable
 - Routing reference clock across the chassis to front of the rack for storage access is a challenge

- **PCIe base specification has included support since PCIe 3.1**
 1) Requires use of larger elasticity buffer
 2) Requires more frequent insertion of SKIP ordered set
 3) Requires receiver changes (CDR)
 4) Model CDRs

- **SRIS enables a number of form factors for PCIe technology**
 - OCuLink
 - Lower cost external/internal cabled PCIe technology

Separate Refclk Modes of Operation: 5600ppm (SRIS) for 2.5, 5.0, 8.0, and 16.0 GT/s Data Rates and 3600 ppm for 32.0 GT/s; 600ppm (SRNS)
Agenda

- Introduction: Evolution of PCI Express Technology
- PCIe and Storage
- **Form Factors**
 - Compliance
 - Conclusions
PCIe® Form Factors

BGA
- 11.5x13 & 16x20mm
- Small and thin platforms

M.2
- 30, 42, 80, and 110mm
- Smallest footprint of PCIe connector form factors, use for boot or for max storage density

U.2 2.5in
- Majority of SSDs sold
- Ease of deployment, hotplug, serviceability
- Single-Port x4 or Dual-Port x2

CEM Add-in-card
- Add-in-card (AIC) has maximum system compatibility with existing servers and most reliable compliance program. Higher power envelope, and options for height and length

Source: Intel Corporation

Flash Memory Summit 2019
Santa Clara, CA
SFF Form Factors

- (SFF TA 1002)
- (SFF TA 1006 – SSD)
- (SFF TA 1007 – SSD)

(Up to 36 Modules)
(Up to 32 Modules)
Agenda

- Introduction: Evolution of PCI Express Technology
- PCIe and Storage
- Form Factors
- **Compliance**
- Conclusions
PCIe® Compliance Process

PCI-SIG® Specs

- Describes
- Device requirements
 - 3.0 Base and CEM specs

C&I Test Spec

- Define
- Test criteria based on spec requirements
 - Test Definitions
 - Pass/Fail Criteria

Test Tools and Procedures

Test H/W & S/W

- Validates
- Test criteria
 - Compliance
 - Interoperability

Clear Test Output Maps
 - Directly to Test Spec

Predictable path to design compliance
Conclusions

▪ Single standard covering systems from handheld to data center
▪ Predominant direct I/O interconnect from CPU with high bandwidth
▪ Low-power
▪ High-performance
▪ Predictive performance growth spanning six generations
▪ A robust and mature compliance and interoperability program