
PCI Local Bus Specification Revision 2.3 Page 1
MSI-X ECN

1. PCI Engineering Change Notice � MSI-X

TITLE: MSI-X
DATE: June 10, 2003
AFFECTED DOCUMENT(S): PCI Local Bus Specification, Revision 2.3 & 3.0 Draft
SPONSOR: Joe Cowan; Hewlett-Packard Company

1.1. Summary of the Functional Changes

Changes are to the PCI Local Bus Specification Revision 2.3, released March 29, 2002. The
changes planned for MSI in PCI 2.3 will also be integrated into the draft PCI 3.0 specification,
which has already undergone membership review.

Extend the current MSI functionality to support a larger number of MSI vectors, plus a separate
and independent Message Address and Message Data for each MSI vector. Allow more
flexibility when SW allocates fewer MSI vectors than requested by HW. Enable per-vector
masking capability.

Compared to the MSI-X ECN that underwent membership review in September 2002, this version
has the following notable changes: (1) allows the MSI-X Table to be placed into general purpose
read/write memory on a device, (2) collects the per-vector Pending Bits into separate Pending Bit
Array (PBA), (3) allows different MSI-X vectors to have different Upper Message Address values,
(4) restricts the programming model to permit only full DWORD or QWORD transactions to
access the MSI-X Table and PBA, (5) adds a new MSI capability structure with 32-bit Message
Address and per-vector masking, and (6) adds Function Masking capability.

Compared to the MSI-X ECN that underwent membership review in February 2003, this version
primarily has only clarifications and additional implementation notes. There is only one semantic
change, that of changing the MSI-X Capability ID from 0Dh to 11h.

1.2. Benefits

1. An advanced device can deliver interrupts to any processor in an SMP platform, even when

the number of processors exceeds 32 (the current MSI vector limit).
2. By supporting separate and independent Message Address/Data for each MSI vector, an

advanced device can target interrupts to different processors in an SMP without relying on a
re-vectoring table in the chip set.

1.3. Assessment of the Impact

Defines an optional new "MSI-X" capability structure. New devices can implement both the old
and new MSI capability structures. Old SW can use the old MSI capability with complete
backward compatibility. See attached pages, which show all required changes to the MSI section
in Chapter 6.

1.4. Analysis of the Hardware Implications

New devices that require the extended MSI capabilities can implement the new functionality.
Requires new MSI-X capability structure, MSI-X Table, Pending Bit Array, and associated control
logic. Can leverage existing MSI implementation logic. Does not require use of any reserved
pins, nor define any new commands.

PCI Local Bus Specification Revision 2.3 Page 2
MSI-X ECN

1.5. Analysis of the Software Implications

New devices can support both old and new MSI capabilities. Old SW can continue to use old
MSI capability for full backward compatibility. Requires new SW to use new MSI-X capabilities.

1.6. Additional Description and Rationale

There are at least two classes of upcoming adapters that require more flexibility in delivering
interrupts over what MSI provides today. First there's the class that supports many (i.e.,
hundreds or thousands of) request and completion queues, with granularity down to a per-
process level or finer. On SMP systems that support process affinity, it's of great benefit for a
completion queue that's owned by a given process to have its associated completion interrupts
delivered to the processor that typically runs that process. To support this well, an adapter
function needs to support at least as many MSI vectors as there are processors in the SMP
system, so that each processor can have at least one dedicated MSI vector by the adapter
function. SMPs supporting 64 processors are becoming common today, and much larger ones
are envisioned for the future. The current MSI limit of 32 vectors per adapter function isn't
adequate to support current and future large SMP systems for this class of adapters.

InfiniBand Architecture (IBA) Host Channel Adapters (HCAs) are a good example of this adapter
class. IBA HCAs typically support many thousands of completion queues (CQs). With apps
doing OS-bypass with IBA messaging and/or remote DMA, each CQ is typically owned by a
single process. When a process allocates a CQ, it's reasonable on an OS that supports process
affinity for the driver to assign a specific MSI vector to that CQ based upon OS policy.

Another class of adapters benefiting from extended MSI functionality are those whose external
links support multiple Quality-of-Service (QoS) levels, such as Ethernet NICs with special support
for 802.1p. An adapter function from this class may not need a large number of distinct MSI
vectors (maybe only 4 or 8), but it's important for the different MSI vectors to be directed to
different processors in an SMP system so that different processors can be assigned to handling
different QoS levels.

While current MSIs can be directed to different processors by appropriate re-vectoring logic in
chipsets, not all chipsets implement such re-vectoring logic. Some chipsets deliver interrupts by
merely "forwarding" MSIs from a PCI bus over to the processor "front-side bus" or equivalent.
Having all MSIs associated with a single adapter function use the same message address means
that all of the function's MSI vectors on such systems will go to the same processor. A lack of
control over the full message data value can be limiting as well. Allowing different MSI vectors for
the same adapter function each to have an arbitrary address and arbitrary data allows an adapter
to target interrupts to different processors on such systems. Moreover, removing the
dependence on non-standardized re-vectoring logic in chipsets makes it more worthwhile for
adapter vendors to implement support for multiple MSI vectors per function, and OSVs to
implement support for features such as interrupt assignment based upon processor affinity.

Details of MSI-X ECN Changes

For details of the changes (with changes highlighted) see attached �Section 6.8 - Message
Signaled Interrupts�, as it would appear in �Chapter 6 - Configuration Space� for the Conventional
PCI 2.3 Specification.

 Revision 2.3

 189

Chapter 6
Configuration Space

6.8. Message Signaled Interrupts
Message Signaled Interrupts (MSI) is an optional feature that enables a device function to
request service by writing a system-specified message data value to a system-specified
address (using a PCI DWORD memory write transaction). The transaction address
specifies the message destination and the transaction data specifies the message. System
software initializes the message destination address and message data (from here on
referred to as the “vector”) during device configuration, allocating one or more non-
shared messagevectors to each MSI capable function.

Since the target of the transaction cannot distinguish between an MSI write transaction
and any other write transaction, all transaction termination conditions are supported.
Therefore, an MSI write transaction can be terminated with a Retry, Master-Abort,
Target-Abort, or normal completion (refer to Section 3.3.3.2.).

It is recommended that devices implement interrupt pins to provide compatibility in
systems that do not support MSI (devices default to interrupt pins). However, it is
expected that the need for interrupt pins will diminish over time. Devices that do not
support interrupt pins due to pin constraints (rely on polling for device service) may
implement messages to increase performance without adding additional pins. Therefore,
system configuration software must not assume that a message capable device has an
interrupt pin.

Interrupt latency (the time from interrupt signaling to interrupt servicing) is system
dependent. Consistent with current interrupt architectures, message signaled interrupts
do not provide interrupt latency time guarantees.

MSI-X defines a separate optional extension to basic MSI functionality. Compared to
MSI, MSI-X supports a larger maximum number of vectors per function, the ability for
software to control aliasing when fewer vectors are allocated than requested, plus the
ability for each vector to use an independent address and data value, specified by a table
that resides in Memory Space. However, most of the other characteristics of MSI-X are
identical to those of MSI.

MSI and MSI-X each support per-vector masking. Per-vector masking is an optional
extension to MSI, and a standard feature with MSI-X. A function that supports the per-
vector masking extension to MSI is still backward compatible with system software that
is unaware of the extension. MSI-X also supports a Function Mask bit, which when set
masks all of the vectors associated with a function.

Per-vector masking is managed through a Mask and Pending bit pair per MSI vector or
MSI-X Table entry. An MSI vector is masked when its associated Mask bit is set. An
MSI-X vector is masked when its associated MSI-X Table entry Mask bit or the MSI-X
Function Mask bit is set. While a vector is masked, the function is prohibited from
sending the associated message, and the function must set the associated Pending bit
whenever the function would otherwise send the message. When software unmasks a
vector whose associated Pending bit is set, the function must schedule sending the
associated message, and clear the Pending bit as soon as the message has been sent.

 Revision 2.3

 190

A function is permitted to implement both MSI and MSI-X, but system software is
prohibited from enabling both at the same time. If system software enables both at the
same time, the result is undefined.

For the sake of software backward compatibility, MSI and MSI-X use separate and
independent capability structures. On functions that support both MSI and MSI-X,
system software that supports only MSI can still enable and use MSI without any
modification. MSI functionality is managed exclusively through the MSI Capability
Structure, and MSI-X functionality is managed exclusively through the MSI-X Capability
Structure.

6.8.1. Message MSI Capability Structure

The capabilities mechanism (refer to Section 6.7.) is used to identify and configure an
MSI or MSI-X capable device. The MSI capability structure is described in the current
section. The MSI-X capability structure is described in Section 6.8.2.

The message MSI capability structure is illustrated in Figure 6-1. Each device function
that supports MSI (in a multi-function device) must implement its own MSI capability
structure. More then than one MSI capability structure per function is prohibited, but a
function is permitted to have both an MSI and an MSI-X capability structure.

Capability Pointer

Capability Pointer + 04h

Capability Pointer + 08h

 31 16 15 8 7 0

 Message Control Next Pointer Capability ID

Message Address

Message Data

Capability Pointer

Capability Pointer + 04h

Capability Pointer + 08h

Capability Pointer + 0Ch

 31 16 15 8 7 0

 Message Control Next Pointer Capability ID

Message Address

Message Data

Message Upper Address

Capability Structure for 32-bit Message Address

Capability Structure for 64-bit Message Address

 Capability Structure for 32-bit Message Address and Per-vector Masking

31 16 15 8 7 0

Message Control Next Pointer Capability ID Capability Pointer

Message Address Capability Pointer + 04h

Reserved Message Data Capability Pointer + 08h

Mask Bits Capability Pointer + 0Ch

Pending Bits Capability Pointer + 10h

 Revision 2.3

 191

 Capability Structure for 64-bit Message Address and Per-vector Masking

31 16 15 8 7 0

Message Control Next Pointer Capability ID Capability Pointer

Message Address Capability Pointer + 04h

Message Upper Address Capability Pointer + 08h

Reserved Message Data Capability Pointer + 0Ch

Mask Bits Capability Pointer + 10h

Pending Bits Capability Pointer + 14h

Figure 6-1: Message Signaled InterruptMSI Capability Structures

To request service, an MSI function writes the contents of the Message Data register to
the address specified by the contents of the Message Address register (and, optionally,
the Message Upper Address register for a 64-bit message address). A read of the address
specified by the contents of the Message Address register produces undefined results.

A function supporting MSI implements one of four MSI Capability Structure layouts
illustrated in Figure 6-1, depending upon which optional features are supported. If a
function supports 64-bit addressing (DAC) when acting as a master, the function is
required to implement 64-bit addressing.

The capability structure for a 32-bit message address (illustrated in Figure 6-1) is
implemented if the function supports a 32-bit message address. The capability structure
for a 64-bit message address (illustrated in Figure 6-1) is implemented if the function
supports a 64-bit message address. If a device supports MSI and the device supports
64-bit addressing (DAC) when acting as a master, the device is required to implement the
64-bit message address structure.

The message control register indicates the function’s capabilities and provides system
software control over MSI.

Each field is further described in the following sub-sections. Reserved registers and bits
always return 0 when read and write operations have no effect. Read-only registers
return valid data when read and write operations have no effect.

6.8.1.1. Capability ID for MSI

7::0 CAP_ID The value of 05h in this field identifies the function as
message signaled interruptbeing MSI capable. This
field is read only.

6.8.1.2. Next Pointer for MSI

7::0 NXT_PTR Pointer to the next item in the capabilities list. Must
be NULL for the final item in the list. This field is
read only.

 Revision 2.3

 192

6.8.1.3. Message Control for MSI

This register provides system software control over MSI. After reset, MSI is disabled. If
MSI and MSI-X are both disabled, (bit 0 is cleared) and the function requests servicing
via its INTx# pin (if supported). System software can enable MSI by setting bit 0 of this
register. System software is permitted to modify the Message Control register’s
read/write bits and fields. A device driver is not permitted to modify the Message
Control register’s read/write bits and fields.

Bits Field Description

15::0809 Reserved
Always returns 0 on a read and a write operation has
no effect.

8 Per-vector
masking capable

If 1, the function supports MSI per-vector masking.

If 0, the function does not support MSI per-vector
masking.

This bit is read only.

7 64 bit address
capable

If 1, the function is capable of generating sending a
64-bit message address.

If 0, the function is not capable of generating sending
a 64-bit message address.

This bit is read only.

6::4 Multiple Message
Enable

software writes to this field to indicate the number of
allocated messagevectors (equal to or less than the
number of requested messagevectors). The number
of allocated messagevectors is aligned to a power of
two. If a function requests four messagevectors
(indicated by a Multiple Message Capable encoding
of “010”), system software can allocate either four,
two, or one messagevector by writing a “010”, “001,
or “000” to this field, respectively. When MSI is
enabled, a device function will be allocated at least 1
messagevector. The encoding is defined as:

 Encoding # of messagevectors
allocated

 000 1

 001 2

 010 4

 011 8

 100 16

 101 32

 110 Reserved

 111 Reserved

This field’s state after reset is “000”.

This field is read/write.

 Revision 2.3

 193

Bits Field Description

3::1 Multiple Message
Capable

System software reads this field to determine the
number of requested messagevectors. The number
of requested messagevectors must be aligned to a
power of two (if a function requires three
messagevectors, it requests four by initializing this
field to “010”). The encoding is defined as:

 Encoding # of messagevectors
requested

 000 1

 001 2

 010 4

 011 8

 100 16

 101 32

 110 Reserved

 111 Reserved

This field is read only.

0 MSI Enable
If 1 and the MSI-X Enable bit in the MSI-X Message
Control register (see Section 6.8.2.3) is 0, the
function is permitted to use MSI to request service
and is prohibited from using its INTx# pin (if
implemented; see 6.2.4 Interrupt pin register).
System configuration software sets this bit to enable
MSI. A device driver is prohibited from writing this bit
to mask a function’s service request. Refer to
Section 6.2.2 for control of INTx#.

If 0, the function is prohibited from using MSI to
request service.

This bit’s state after reset is 0 (MSI is disabled).

This bit is read/write.

 Revision 2.3

 194

6.8.1.4. Message Address for MSI

Bits Field Description

31::02 Message
Address

System-specified message address.

If the Message Enable bit (bit 0 of the Message
Control register) is set, the contents of this register
specify the DWORD-aligned address (AD[31::02])
for the MSI memory write transaction. AD[1::0] are
driven to zero during the address phase.

This field is read/write.

01::00 Reserved Always returns 0 on read. Write operations have no
effect.

6.8.1.5. Message Upper Address for MSI (Optional)

Bits Field Description

31::00 Message Upper
Address

System-specified message upper address.

This register is optional and is implemented only if
the devicefunction supports a 64-bit message
address (bit 7 in Message Control register set)40. If
the Message Enable bit (bit 0 of the Message Control
register) is set, the contents of this register (if non-
zero) specify the upper 32-bits of a 64-bit message
address (AD[63::32]). If the contents of this register
are zero, the devicefunction uses the 32 bit address
specified by the message address register.

This field is read/write.

40 This register is required when the device supports 64-bit addressing (DAC) when acting as a master.

 Revision 2.3

 195

6.8.1.6. Message Data for MSI

Bits Field Description

15::00 Message Data System-specified message data.

Each MSI function is allocated up to 32 unique
messages.

System architecture specifies the number of unique
messages supported by the system.

If the Message Enable bit (bit 0 of the Message
Control register) is set, the message data is driven
onto the lower word (AD[15::00]) of the memory
write transaction’s data phase. AD[31::16] are
driven to zero during the memory write transaction’s
data phase. C/BE[3::0]# are asserted during the
data phase of the memory write transaction.

The Multiple Message Enable field (bits 6-4 of the
Message Control register) defines the number of low
order message data bits the function is permitted to
modify to generate its system software allocated
messagevectors. For example, a Multiple Message
Enable encoding of “010” indicates the function has
been allocated four messagevectors and is permitted
to modify message data bits 1 and 0 (a function
modifies the lower message data bits to generate the
allocated number of messagevectors). If the Multiple
Message Enable field is “000”, the function is not
permitted to modify the message data.

This field is read/write.

6.8.1.7. Mask Bits for MSI (Optional)

The Mask Bits and Pending Bits registers enable software to disable or defer message
sending on a per-vector basis.

MSI vectors are numbered 0 through N-1, where N is the number of vectors allocated by
software. Each vector is associated with a correspondingly numbered bit in the Mask
Bits and Pending Bits registers.

The Multiple Message Capable field indicates how many vectors (with associated Mask
and Pending bits) are implemented. All unimplemented Mask and Pending bits are
reserved.

After reset, the state of all implemented Mask and Pending bits is 0 (no vectors are
masked and no messages are pending).

Bits Field Description

31::00 Mask Bits For each Mask bit that is set, the function is
prohibited from sending the associated message.

This field is read/write.

 Revision 2.3

 196

6.8.1.8. Pending Bits for MSI (Optional)

Bits Field Description

31::00 Pending Bits For each Pending bit that is set, the function has a
pending associated message.

This field is read only.

6.8.2. MSI-X Capability & Table Structures

The MSI-X capability structure is illustrated in Figure 6-2. More than one MSI-X
capability structure per function is prohibited, but a function is permitted to have both an
MSI and an MSI-X capability structure.

In contrast to the MSI capability structure, which directly contains all of the
control/status information for the function's vectors, the MSI-X capability structure
instead points to an MSI-X Table structure and a MSI-X Pending Bit Array (PBA)
structure, each residing in Memory Space.

Each structure is mapped by a Base Address register (BAR) belonging to the function,
located beginning at 10h in Configuration Space. A BAR Indicator register (BIR)
indicates which BAR, and a QWORD-aligned Offset indicates where the structure begins
relative to the base address associated with the BAR. The BAR is permitted to be either
32-bit or 64-bit, but must map Memory Space. A function is permitted to map both
structures with the same BAR, or to map each structure with a different BAR.

The MSI-X Table structure, illustrated in Figure 6-3, typically contains multiple entries,
each consisting of several fields: Message Address, Message Upper Address, Message
Data, and Vector Control. Each entry is capable of specifying a unique vector.

The Pending Bit Array (PBA) structure, illustrated in Figure 6-4, contains the function’s
Pending Bits, one per Table entry, organized as a packed array of bits within QWORDs.
The last QWORD will not necessarily be fully populated.

31 16 15 8 7 3 2 1 0

Message Control Next Pointer Capability ID CP+00h

Table Offset Table
BIR CP+04h

PBA Offset PBA
BIR CP+08h

Figure 6-2: MSI-X Capability Structure

 Revision 2.3

 197

DWORD 3 DWORD 2 DWORD 1 DWORD 0

Vector Control Msg Data Msg Upper Addr Msg Addr entry 0 Base

Vector Control Msg Data Msg Upper Addr Msg Addr entry 1 Base+1*16

Vector Control Msg Data Msg Upper Addr Msg Addr entry 2 Base+2*16

… … … … … …

Vector Control Msg Data Msg Upper Addr Msg Addr entry (N-1) Base+(N-1)*16

Figure 6-3: MSI-X Table Structure

63 62 61 … … 2 1 0

Pending Bits 0 through 63 QWORD 0 Base

Pending Bits 64 through 127 QWORD 1 Base+1*8

… … …

Pending Bits ((N-1) div 64)*64 through N-1 QWORD ((N-1) div 64) Base+((N-1) div 64)*8

Figure 6-4: MSI-X PBA Structure

To request service using a given MSI-X Table entry, a function performs a DWORD
memory write transaction using the contents of the Message Data field entry for data, the
contents of the Message Upper Address field for the upper 32 bits of address, and the
contents of the Message Address field entry for the lower 32 bits of address. A memory
read transaction from the address targeted by the MSI-X message produces undefined
results.

If a Base Address register that maps address space for the MSI-X Table or MSI-X PBA
also maps other usable address space that is not associated with MSI-X structures,
locations (e.g., for CSRs) used in the other address space must not share any naturally
aligned 4 KB address range with one where either MSI-X structure resides. This allows
system software where applicable to use different processor attributes for MSI-X
structures and the other address space. (Some processor architectures do not support
having different processor attributes associated with the same naturally aligned 4 KB
physical address range.) The MSI-X Table and MSI-X PBA are permitted to co-reside
within a naturally aligned 4 KB address range, though they must not overlap with each
other.

Implementation Note: Dedicated BARs and Address Range Isolation

To enable system software to map MSI-X structures onto different processor pages for
improved access control, it is recommended that a function dedicate separate Base
Address registers for the MSI-X Table and MSI-X PBA, or else provide more than the
minimum required isolation with address ranges.

If dedicated separate Base Address registers is not feasible, it is recommended that a
function dedicate a single Base Address register for the MSI-X Table and MSI-X PBA.

If a dedicated Base Address register is not feasible, it is recommended that a function
isolate the MSI-X structures from the non-MSI-X structures with aligned 8 KB ranges
rather than the mandatory aligned 4 KB ranges.

For example, if a Base Address register needs to map 2 KB for an MSI-X Table
containing 128 entries, 16 bytes for an MSI-X PBA containing 128 bits, and 64 bytes for

 Revision 2.3

 198

registers not related to MSI-X, the following is an acceptable implementation. The Base
Address register requests 8 KB of total address space, maps the first 64 bytes for the non
MSI-X registers, maps the MSI-X Table beginning at an offset of 4 KB, and maps the
MSI-X PBA beginning at an offset of 6 KB.

A preferable implementation for a shared Base Address register is for it to request 16 KB
of total address space, map the first 64 bytes for the non MSI-X registers, map the MSI-X
Table beginning at an offset of 8 KB, and map the MSI-X PBA beginning at an offset of
12 KB.

Implementation Note: MSI-X Memory Space Structures in Read/Write Memory

The MSI-X Table and MSI-X PBA structures are defined such that they can reside in
general purpose read/write memory on a device, for ease of implementation and added
flexibility. To achieve this, none of the contained fields are required to be read-only, and
there are also restrictions on transaction alignment and sizes.

For all accesses to MSI-X Table and MSI-X PBA fields, software must use aligned full
DWORD or aligned full QWORD transactions; otherwise, the result is undefined.

MSI-X Table entries and Pending bits are each numbered 0 through N-1, where N-1 is
indicated by the Table Size field in the MSI-X Message Control register. For a given
arbitrary MSI-X Table entry K, its starting address can be calculated with the formula:

entry starting address = Table base + K*16

For the associated Pending bit K, its address for QWORD access and bit number within
that QWORD can be calculated with the formulas:

QWORD address = PBA base + (K div41 64)*8

QWORD bit# = K mod42 64

Software that chooses to read Pending bit K with DWORD accesses can use these
formulas:

DWORD address = PBA base + (K div 32)*4

DWORD bit# = K mod 32

Each field in the MSI-X capability, Table, and PBA structures is further described in the
following sections. Within the MSI-X capability structure, reserved registers and bits
always return 0 when read, and write operations have no effect. Read-only registers
return valid data when read, and write operations have no effect. Within the MSI-X
Table and PBA structures, reserved fields have special rules.

6.8.2.1. Capability ID for MSI-X

7::0 CAP_ID The value of 11h in this field identifies the function as
being MSI-X capable. This field is read only.

41 Div is an integer divide with truncation.
42 Mod is the remainder from an integer divide.

 Revision 2.3

 199

6.8.2.2. Next Pointer for MSI-X

7::0 NXT_PTR Pointer to the next item in the capabilities list. Must
be NULL for the final item in the list. This field is
read only.

6.8.2.3. Message Control for MSI-X

After reset, MSI-X is disabled. If MSI and MSI-X are both disabled, the function
requests servicing via its INTx# pin (if supported). System software can enable MSI-X
by setting bit 15 of this register. System software is permitted to modify the Message
Control register’s read/write bits and fields. A device driver is not permitted to modify
the Message Control register’s read/write bits and fields.

Bits Field Description

15 MSI-X Enable
If 1 and the MSI Enable bit in the MSI Message
Control register (see Section 6.8.1.3) is 0, the
function is permitted to use MSI-X to request service
and is prohibited from using its INTx# pin (if
implemented; see 6.2.4 Interrupt pin register).
System configuration software sets this bit to enable
MSI-X. A device driver is prohibited from writing this
bit to mask a function’s service request.

If 0, the function is prohibited from using MSI-X to
request service.

This bit’s state after reset is 0 (MSI-X is disabled).

This bit is read/write.

14 Function Mask
If 1, all of the vectors associated with the function are
masked, regardless of their per-vector Mask bit
states.

If 0, each vector’s Mask bit determines whether the
vector is masked or not.

Setting or clearing the MSI-X Function Mask bit has
no effect on the state of the per-vector Mask bits.

This bit’s state after reset is 0 (unmasked).

This bit is read/write.

13::11 Reserved
Always returns 0 on a read and a write operation has
no effect.

10::00 Table Size System software reads this field to determine the
MSI-X Table Size N, which is encoded as N-1. For
example, a returned value of “00000000011”
indicates a table size of 4.

This field is read only.

 Revision 2.3

 200

6.8.2.4. Table Offset / Table BIR for MSI-X

Bits Field Description

31::3 Table Offset Used as an offset from the address contained by one
of the function’s Base Address registers to point to
the base of the MSI-X Table. The lower 3 Table BIR
bits are masked off (set to zero) by software to form
a 32-bit QWORD-aligned offset.

This field is read only.

2::0 Table BIR Indicates which one of a function’s Base Address
registers, located beginning at 10h in Configuration
Space, is used to map the function’s MSI-X Table
into Memory Space.

BIR Value Base Address register

0 10h

1 14h

2 18h

3 1Ch

4 20h

5 24h

6 Reserved

7 Reserved

For a 64-bit Base Address register, the Table BIR
indicates the lower DWORD. With PCI-to-PCI
bridges, BIR values 2 through 5 are also reserved.

This field is read only.

 Revision 2.3

 201

6.8.2.5. PBA Offset / PBA BIR for MSI-X

Bits Field Description

31::3 PBA Offset Used as an offset from the address contained by one
of the function’s Base Address registers to point to
the base of the MSI-X PBA. The lower 3 PBA BIR
bits are masked off (set to zero) by software to form
a 32-bit QWORD-aligned offset.

This field is read only.

2::0 PBA BIR Indicates which one of a function’s Base Address
registers, located beginning at 10h in Configuration
Space, is used to map the function’s MSI-X PBA into
Memory Space.

The PBA BIR value definitions are identical to those
for the MSI-X Table BIR.

This field is read only.

6.8.2.6. Message Address for MSI-X Table Entries

Bits Field Description

31::02 Message
Address

System-specified message lower address.

For MSI-X messages, the contents of this field from
an MSI-X Table entry specifies the lower portion of
the DWORD-aligned address (AD[31::02]) for the
memory write transaction.

This field is read/write.

01:00 Message
Address

For proper DWORD alignment, software must always
write zeroes to these two bits; otherwise the result is
undefined.

The state of these bits after reset must be 0.

These bits are permitted to be read only or
read/write.

6.8.2.7. Message Upper Address for MSI-X Table Entries

Bits Field Description

31::00 Message Upper
Address

System-specified message upper address bits.

If this field is zero, Single Address Cycle (SAC)
messages are used. If this field is non-zero, Dual
Address Cycle (DAC) messages are used.

This field is read/write.

 Revision 2.3

 202

6.8.2.8. Message Data for MSI-X Table Entries

Bits Field Description

31::00 Message Data System-specified message data.

For MSI-X messages, the contents of this field from
an MSI-X Table entry specifies the data driven on
AD[31::00] during the memory write transaction’s
data phase. C/BE[3::0]# are asserted during the
data phase of the memory write transaction.

In contrast to message data used for MSI messages,
the low-order message data bits in MSI-X messages
are not modified by the function.

This field is read/write.

6.8.2.9. Vector Control for MSI-X Table Entries

Bits Field Description

31::01 Reserved After reset, the state of these bits must be 0.
However, for potential future use, software must
preserve the value of these reserved bits when
modifying the value of other Vector Control bits. If
software modifies the value of these reserved bits,
the result is undefined.

00 Mask Bit When this bit is set, the function is prohibited from
sending a message using this MSI-X Table entry.
However, any other MSI-X Table entries
programmed with the same vector will still be
capable of sending an equivalent message unless
they are also masked.

This bit’s state after reset is 1 (entry is masked).

This bit is read/write.

 Revision 2.3

 203

6.8.2.10. Pending Bits for MSI-X PBA Entries

Bits Field Description

63::00 Pending Bits
For each Pending Bit that is set, the function has a
pending message for the associated MSI-X Table
entry.

Pending bits that have no associated MSI-X Table
entry are reserved. After reset, the state of reserved
Pending bits must be 0.

Software should never write, and should only read
Pending Bits. If software writes to Pending Bits, the
result is undefined.

Each Pending Bit’s state after reset is 0 (no message
pending).

These bits are permitted to be read only or
read/write.

6.8.3. MSI and MSI-X Operation

At configuration time, system software traverses the function’s capability list. If a
capability ID of 05h is found, the function implements MSI. If a capability ID of 11h is
found, the function implements MSI-X. A given function is permitted to implement MSI
alone, MSI-X alone, both, or neither. Within a device, different functions are permitted
to implement different sets of these interrupt mechanisms, and system software manages
each function’s interrupt mechanisms independently.

6.8.3.1. MSI Configuration

In this section, all register and field references are in the context of the MSI capability
structure.

System software reads the MSI capability structure’s Message Control register to
determine the function’s MSI capabilities.

System software reads the Multiple Message Capable field (bits 3-1 of the Message
Control register) to determine the number of requested messagevectors. MSI supports a
maximum of 32 vectors per function. System software writes to the Multiple Message
Enable field (bits 6-4 of the Message Control register) to allocate either all or a subset of
the requested messagevectors. For example, a function can request four messagevectors
and be allocated either four, two, or one messagevector. The number of messagevectors
requested and allocated are is aligned to a power of two (a function that requires three
messagevectors must request four).

If the Per-vector Masking Capable bit (bit 8 of the Message Control register) is set, and
system software supports per-vector masking, system software may mask one or more
vectors by writing to the Mask Bits register.

If the 64-bit Address Capable bit (bit 7 of the Message Control register) is set, system
software initializes the MSI capability structure’s Message Address register (specifying
the lower 32 bits of the message address) and the Message Upper Address register
(specifying the upper 32 bits of the message address) with a system-specified message

 Revision 2.3

 204

destination address. System software may program the Message Upper Address register
to zero so that the function generates uses a 32-bit address for the MSI write transaction.
If this bit is clear, system software initializes the MSI capability structure’s Message
Address register (specifying a 32-bit message address) with a system specified message
destination address.

System software initializes the MSI capability structure’s Message Data register with a
system specified messagedata value. Care must be taken to initialize only the Message
Data register (i.e., a 2-byte value) and not modify the upper two bytes of that DWORD
location.

6.8.3.2. MSI-X Configuration

In this section, all register and field references are in the context of the MSI-X capability,
MSI-X Table, and MSI-X PBA structures.

System software allocates address space for the function’s standard set of Base Address
registers and sets the registers accordingly. One of the function’s Base Address registers
includes address space for the MSI-X Table, though the system software that allocates
address space does not need to be aware of which Base Address register this is, or the fact
the address space is used for the MSI-X Table. The same or another Base Address
register includes address space for the MSI-X PBA, and the same point regarding system
software applies.

Depending upon system software policy, system software, device driver software, or each
at different times or environments may configure a function’s MSI-X capability and table
structures with suitable vectors. For example, a booting environment will likely require
only a single vector, whereas a normal OS environment for running applications may
benefit from multiple vectors if the function supports an MSI-X Table with multiple
entries. For the remainder of this section, “software” refers to either system software or
device driver software.

Software reads the Table Size field from the Message Control register to determine the
MSI-X Table size. The field encodes the number of table entries as N-1, so software
must add 1 to the value read from the field to calculate the number of table entries N.
MSI-X supports a maximum table size of 2048 entries.

Software calculates the base address of the MSI-X Table by reading the 32-bit value from
the Table Offset / Table BIR register, masking off the lower 3 Table BIR bits, and adding
the remaining QWORD-aligned 32-bit Table offset to the address taken from the Base
Address register indicated by the Table BIR. Software calculates the base address of the
MSI-X PBA using the same process with the PBA Offset / PBA BIR register.

For each MSI-X Table entry that will be used, software fills in the Message Address
field, Message Upper Address field, Message Data field, and Vector Control Field.
Software must not modify the Address or Data fields of an entry while it is unmasked.
Refer to Section 6.8.3.5 for details.

Implementation Note: Special Considerations for QWORD Accesses

Software is permitted to fill in MSI-X Table entry DWORD fields individually with
DWORD writes, or software in certain cases is permitted to fill in appropriate pairs of
DWORDs with a single QWORD write. Specifically, software is always permitted to fill
in the Message Address and Message Upper Address fields with a single QWORD write.
If a given entry is currently masked (via its Mask bit or the Function Mask bit), software
is permitted to fill in the Message Data and Vector Control fields with a single QWORD
write, taking advantage of the fact the Message Data field is guaranteed to become visible

 Revision 2.3

 205

to hardware no later than the Vector Control field. However, if software wishes to mask
a currently unmasked entry (without setting the Function Mask bit), software must set the
entry’s Mask bit using a DWORD write to the Vector Control field, since performing a
QWORD write to the Message Data and Vector Control fields might result in the
Message Data field being modified before the Mask bit in the Vector Control field
becomes set.

For potential use by future specifications, the Reserved bits in the Vector Control field
must have their values after reset preserved by software. If software does not preserve
their values, the result is undefined.

For each MSI-X Table entry that software chooses not to configure for generating
messages, software can simply leave the entry in its default state of being masked.

Software is permitted to configure multiple MSI-X Table entries with the same vector,
and this may indeed be necessary when fewer vectors are allocated than requested.

Implementation Note: Handling MSI-X Vector Shortages

For the case where fewer vectors are allocated to a function than desired, software-
controlled aliasing as enabled by MSI-X is one approach for handling the situation. For
example, if a function supports 5 queues, each with an associated MSI-X table entry, but
only 3 vectors are allocated, the function could be designed for software still to configure
all 5 table entries, assigning one or more vectors to multiple table entries. Software could
assign the 3 vectors {A,B,C} to the 5 entries as ABCCC, ABBCC, ABCBA, or other
similar combinations.

Alternatively, the function could be designed for software to configure it (using a device-
specific mechanism) to use only 3 queues and 3 MSI-X table entries. Software could
assign the 3 vectors {A,B,C} to the 5 entries as ABC--, A-B-C, A--CB, or other similar
combinations.

6.8.3.3. Enabling Operation

To maintain backward compatibility, the MSI Enable bit in the MSI Message Control
register and the MSI-X Enable bit in the MSI-X Message Control register (bit 0 of the
Message Control register) is are each cleared after reset (MSI is and MSI-X are both
disabled). System configuration software sets this bitone of these bits to enable either
MSI or MSI-X, but never both simultaneously. Behavior is undefined if both MSI and
MSI-X are enabled simultaneously. A device driver is prohibited from writing this bit to
mask a function’s service request. Once While enabled for MSI or MSI-X operation, a
function is prohibited from using its INTx# pin (if implemented) to request service (MSI,
MSI-X, and INTx# are mutually exclusive).

6.8.3.4. GeneratingSending Messages

Once MSI or MSI-X is enabled (the appropriate bit 0 of in one of the Message Control
Rregisters is set), and one or more vectors is unmasked, the function is permitted to may
send messages. To send a message, a function does a DWORD memory write to the
appropriate message address with the appropriate message data.address specified by the
contents of the Message Address register (and optionally the Message Upper Address
register for a 64-bit message address).

The For MSI, the DWORD that is written is made up of the value in the MSI Message
Data register in the lower two bytes and zeroes in the upper two bytes.

 Revision 2.3

 206

If For MSI, if the Multiple Message Enable field (bits 6-4 of the MSI Message Control
register) is non-zero, the device function is permitted to modify the low order bits of the
message data to generate multiple messagevectors. For example, a Multiple Message
Enable encoding of “010” indicates the function is permitted to modify message data bits
1 and 0 to generate up to four unique messagevectors. If the Multiple Message Enable
field is “000”, the function is not permitted to modify the message data.

For MSI-X, the MSI-X Table contains at least one entry for every allocated vector, and
the 32-bit Message Data field value from a selected table entry is used in the message
without any modification to the low-order bits by the function.

How a function uses multiple messagevectors (when allocated) is device dependent. A
function must handle being allocated fewer less messagevectors than requested.

6.8.3.5. Per-vector Masking and Function Masking

Per-vector masking is an optional feature with MSI, and a standard feature in MSI-X.

Function Masking is a standard feature in MSI-X. When the MSI-X Function Mask bit is
set, all of the function’s entries must behave as being masked, regardless of the per-entry
Mask bit states. Function Masking is not supported in MSI, but software can readily
achieve a similar effect by setting all MSI Mask bits using a single DWORD write.

“Per-vector masking” in MSI-X is controlled by a Mask bit in each MSI-X Table entry.
While more accurately termed “per-entry masking”, masking an MSI-X Table entry is
still referred to as “vector masking” so similar descriptions can be used for both MSI and
MSI-X. However, since software is permitted to program the same vector (a unique
Address/Data pair) into multiple MSI-X table entries, all such entries must be masked in
order to guarantee the function won’t send a message using that Address/Data pair.

For MSI and MSI-X, while a vector is masked, the function is prohibited from sending
the associated message, and the function must set the associated Pending bit whenever
the function would otherwise send the message. When software unmasks a vector whose
associated Pending bit is set, the function must schedule sending the associated message,
and clear the Pending bit as soon as the message has been sent. Note that clearing the
MSI-X Function Mask bit may result in many messages needing to be sent.

If a masked vector has its Pending bit set, and the associated underlying interrupt events
are somehow satisfied (usually by software though the exact manner is function-specific),
the function must clear the Pending bit, to avoid sending a spurious interrupt message
later when software unmasks the vector. However, if a subsequent interrupt event occurs
while the vector is still masked, the function must again set the Pending bit.

Software is permitted to mask one or more vectors indefinitely, and service their
associated interrupt events strictly based on polling their Pending bits. A function must
set and clear its Pending bits as necessary to support this “pure polling” mode of
operation.

For MSI-X, a function is permitted to cache Address and Data values from unmasked
MSI-X Table entries. However, anytime software unmasks a currently masked MSI-X
Table entry either by clearing its Mask bit or by clearing the Function Mask bit, the
function must update any Address or Data values that it cached from that entry. If
software changes the Address or Data value of an entry while the entry is unmasked, the
result is undefined.

 Revision 2.3

 207

6.8.3.6. Hardware/Software Synchronization

If a devicefunction generatessends messages with signals the same message vector many
multiple times before being acknowledged by software, only one message is guaranteed
to be serviced. If all messages must be serviced, a device driver handshake is required.
In other words, once a function signalssends Message Vector A, it cannot signalsend
Message Vector A again until it is explicitly enabled to do so by its device driver
(provided all messages must be serviced). If some messages can be lost, a device driver
handshake is not required. For functions that support multiple messagevectors, a function
can signal send multiple unique messagevectors and is guaranteed that each unique
message will be serviced. For example, a devicefunction can signalsend Message Vector
A followed by Message Vector B without any device driver handshake (both Message
Vector A and Message Vector B will be serviced).

Implementation Note: Servicing MSI and MSI-X Interrupts
When system software allocates fewer MSI or MSI-X vectors to a function than it
requests, multiple interrupt sources within the function, each desiring a unique vector,
may be required to share a single vector. Without proper handshakes between hardware
and software, hardware may send fewer messages than software expects, or hardware
may send what software considers to be extraneous messages.

A rather sophisticated but resource-intensive approach is to associate a dedicated event
queue with each allocated vector, with producer and consumer pointers for managing
each event queue. Such event queues typically reside in host memory. The function acts
as the producer and software acts as the consumer. Multiple interrupt sources within a
function may be assigned to each event queue as necessary. Each time an interrupt
source needs to signal an interrupt, the function places an entry on the appropriate event
queue (assuming there’s room), updates a copy of the producer pointer (typically in host
memory), and sends an interrupt message with the associated vector when necessary to
notify software that the event queue needs servicing. The interrupt service routine for a
given event queue processes all entries it finds on its event queue, as indicated by the
producer pointer. Each event queue entry identifies the interrupt source and possibly
additional information about the nature of the event. The use of event queues and
producer/consumer pointers can be used to guarantee that interrupt events won't get
dropped when multiple interrupt sources are forced to share a vector. There's no need for
additional handshaking between sending multiple messages associated with the same
event queue, to guarantee that every message gets serviced. In fact, various standard
techniques for "interrupt coalescing" can be used to avoid sending a separate message for
every event that occurs, particularly during heavy bursts of events.

In more modest implementations, the hardware design of a function’s MSI or MSI-X
logic sends a message any time a falling edge would have occurred on the INTx# pin if
MSI or MSI-X had not been enabled. For example, consider a scenario in which two
interrupt events (possibly from distinct interrupt sources within a function) occur in rapid
succession. The first event causes a message to be sent. Before the interrupt service
routine has had an opportunity to service the first event, the second event occurs. In this
case, only one message is sent, because the first event is still active at the time the second
event occurs (a hardware INTx# pin signal would have had only one falling edge).

One handshake approach for implementations like the above is to use standard per-vector
masking, and allow multiple interrupt sources to be associated with each vector. A given
vector’s interrupt service routine sets the vector’s Mask bit before it services any
associated interrupting events and clears the Mask bit after it has serviced all the events it
knows about. (This could be any number of events.) Any occurrence of a new event

 Revision 2.3

 208

while the Mask bit is set results in the Pending bit being set. If one or more associated
events are still pending at the time the vector’s Mask bit is cleared, the function
immediately sends another message.

A handshake approach for MSI functions that do not implement per-vector masking is for
a vector’s interrupt service routine to re-inspect all of the associated interrupt events after
clearing what is presumed to be the last pending interrupt event. If another event is found
to be active, it is serviced in the same interrupt service routine invocation, and the
complete re-inspection is repeated until no pending events are found. This ensures that if
an additional interrupting event occurs before a previous interrupt event is cleared,
whereby the function does not send an additional interrupt message, that the new event is
serviced as part of the current interrupt service routine invocation.

This alternative has the potential side effect of one vector’s interrupt service routine
processing an interrupting event that has already generated a new interrupt message. The
interrupt service routine invocation resulting from the new message may find no pending
interrupt events. Such occurrences are sometimes referred to as spurious interrupts, and
software using this approach must be prepared to tolerate them.

An MSI is by definition a non-shared interrupt that enforces data consistency (ensures the
interrupt service routine accesses the most recent data). The system guarantees that any
data written by the device prior to sending the MSI has reached its final destination
before the interrupt service routine accesses that data. Therefore, a device driver is not
required to read its device before servicing its MSI.An MSI or MSI-X message, by virtue
of being a posted memory write (PMW) transaction, is prohibited by PCI ordering rules
from passing PMW transactions sent earlier by the function. The system must guarantee
that an interrupt service routine invoked as a result of a given message will observe any
updates performed by PMW transactions arriving prior to that message. Thus, the
interrupt service routine of a device driver is not required to read from a device register in
order to ensure data consistency with previous PMW transactions. However, if multiple
MSI-X Table entries share the same vector, the interrupt service routine may need to read
from some device specific register to determine which interrupt sources need servicing.

6.8.3.7. MSI Message Transaction Termination

The target of an MSI or MSI-X write transaction cannot distinguish between it and any
other memory write transaction. The termination requirements for an MSI or MSI-X
write transaction are the same as for any other memory write transaction except as noted
below.

If the MSI or MSI-X write transaction is terminated with a Master-Abort or a Target-
Abort, the master that originated the MSI or MSI-X memory write transaction is required
to report the error by asserting SERR# (if bit 8 in the Command register is set) and to set
the appropriate bits in the Status register (refer to Section 3.7.4.2.). An MSI or MSI-X
memory write transaction is ignored by the target if it is terminated with a Master-Abort
or Target-Abort.

Refer to the PCI-to-PCI Bridge Architecture Specification, Revision 1.1 (Section 6, Error
Support) for PCI-to-PCI bridge SERR# generation in response to error conditions from
posted memory writes on the destination bus.

Note that SERR# generation in an MSI-enabled environment containing PCI-to-PCI
bridges requires the SERR# reporting enable bits in all devices in the MSI message path
to be set. For PCI-to-PCI bridges specifically, refer to Section 6.2.2 and PCI-to-PCI
Bridge Architecture Specification, Revision 1.1, Sections 3.2.4.3 and 3.2.5.17.).

 Revision 2.3

 209

If the MSI or MSI-X write transaction results in a data parity error, the master that
originated the MSI or MSI-X write transaction is required to assert SERR# (if bit 8 in the
Command register is set) and to set the appropriated bits in the Status register (refer to
Section 3.7.4.).

6.8.2.2. MSI Message Transaction Reception and Ordering
Requirements

As with all memory write transactions, the device that includes the target of the interrupt
message (the interrupt receiver) is required to complete all interrupt message transactions
as a target without requiring other transactions to complete first as a master. (Refer to
Section 3.3.3.3.4. In general, this means that the message receiver must complete the
interrupt message transaction independent of when the CPU services the interrupt. For
example, each time the interrupt receiver receives an interrupt message, it could set a bit
in an internal register indicating that this message had been received and then complete
the transaction on the bus. The appropriate interrupt service routine would later be
dispatched because this bit was set. The message receiver would not be allowed to delay
the completion of the interrupt message on the bus pending acknowledgement from the
processor that the interrupt was being serviced. Such dependencies can lead to deadlock
when multiple devices generate send interrupt messages simultaneously.

Although interrupt messages remain strictly ordered throughout the PCI bus hierarchy,
the order of receipt of the interrupt messages does not guarantee any order in which the
interrupts will be serviced. Since the message receiver must complete all interrupt
message transactions without regard to when the interrupt was actually serviced, the
message receiver will generally not maintain any information about the order in which
the interrupts were received. This is true both of interrupt messages received from
different devices, and multiple messages received from the same device. If a device
requires one interrupt message to be serviced before another, then the device must not
send the second interrupt message until the first one has been serviced.

