
 Page 1

PCI-SIG ENGINEERING CHANGE NOTICE

TITLE: Flattening Portal Bridge (FPB)

DATE: Introduced: 19 April 2016
Updated: 2 Feb 2017
PWG Approval: Final release 9 Feb 2017

AFFECTED DOCUMENT: PCI Express Base Specification, Rev. 3.0 / 3.1
PCI-to-PCI Bridge Architecture Specification, Rev 1.2
Single Root I/O Virtualization and Sharing Specification, Rev 1.1 ,
PCI Code and ID Assignment Specification (current version)

SPONSOR: Intel, Microsoft, NVidia

Part I

1. Summary of the Functional Changes

This ECR is intended to address a class of issues with PCI/PCIe architecture that relate to
resource allocation inefficiency. To explain this, first we must define some terms:

 Static use cases, refer to scenarios where resources are allocated at system boot and

then typically not changed again

 Dynamic use cases, refer to scenarios where run-time resource rebalancing (allocation of

new resources, freeing of resources no longer needed) is required, due to hot

add/remove, or by other needs.

In the Static cases there are limits on the size of hierarchies and number of Endpoints due to the
Bus & Device Number “waste” caused by the PCI/PCIe architectural definition for Switches, and by
the requirement that Downstream Ports associate an entire Bus Number with their Link. This
proposal addresses this class of problems by “flattening” the use of Routing IDs so that Switches
and Downstream Ports are able to make more efficient use of the available space.

For the Dynamic cases, until now, the “best known method” to avoid rebalancing has been to
reserve large ranges of Bus Numbers and Memory Space in the bridge above the relevant
Endpoint(s) such that hopefully any needs can be satisfied within the pre-allocated ranges. This
leads to additional waste, which makes the Routing ID issues worse, and this approach is difficult
to implement in the general case, even for relatively simple cases, where, for example, one might
have an SSD implementing a single Endpoint replaced by a unit that has a Switch, creating an
internal hierarchy within the unit, so that although an initial allocation of just one Bus would have
been sufficient, the initial allocation breaks immediately with the new unit.

For Memory Space the pre-allocation approach is problematic when hot-plugged Endpoints may
require the allocation of Memory Space below 4 GB, which by its nature is a limited resource,
which is quickly used up by pre-allocation of even relatively small amounts, and for which pre-
allocation is unattractive because of the multiple system elements placing demands on system
address space allocation below 4 GB. Depending on multiple factors including a given system’s
physical memory addressing capability, there may in some cases also be resource constraints in
Memory Space above 4 GB. Often, the constraints that apply to Memory Space below 4 GB differ
from those that apply above 4 GB, and so this ECR provides separate mechanisms optimized for
each.

 Page 2

This proposal addresses both the Static and Dynamic use cases by defining mechanisms to
enable discontinuous resource range (re/)allocation for both Routing IDs and Memory Space. The
intent is to allow system software the ability to maintain resource “pools” which can be allocated
(and freed back to) at run-time, without disrupting other operations in progress as is required with
rebalancing.

The Flattening Portal Bridge (FPB) is an optional Capability that may be implemented by Type 1
(bridge) Functions in Root and Switch Ports to support more efficient and dense Routing ID
allocation, and to enable reallocation of Routing ID resources without requiring the rebalancing of
resources assigned elsewhere in a system, and to enable discontinuous Memory Space regions to
avoid the need to rebalance Memory Space resources. IO space allocation is not modified by FPB
as it is felt that the value is too low to justify the cost.

2. Benefits as a Result of the Changes

The benefits of implementing FPB are:

1. More efficient and dense allocation of Routing IDs, enabling larger hierarchies.

2. Runtime reallocation of resources for hot add/remove cases without the need to globally

rebalance resources.

3. Removes the requirement for Routing ID’s and Memory Space to be allocated in

contiguous ranges.

4. Supports mixed systems including components that support FPB along with components

that do not.

5. No changes to existing Discrete Endpoints

3. Assessment of the Impact

FPB will require new hardware and software, but has no effect unless enabled, and is disabled by
default. Guidance is provided to support the coordinated introduction of hardware, firmware and
system software supporting FPB.

Non-FPB RCs, Switches, bridges and Endpoints can be used in mixed system environments along
with RCs and Switches implementing FPB.

4. Analysis of the Hardware Implications

Hardware changes are required to implement the new FPB functionality. Only Type 1 functions
implementing FPB are affected.

Endpoints and Type 0 functions are not affected.

As required to achieve the “Flattening” aspect of FPB, Upstream Ports can be mapped to Device
Numbers other than 0. PCIe has always explicitly required non-ARI Devices to capture both the
Bus and Device Numbers they are addressed with. However, because current hardware is not
exposed to non-0 Device Numbers, there is the risk that not all existing hardware actually does
what the spec requires, and we should try to flag non-compliant hardware ASAP. Devices
supporting ARI will work with FPB, but require system software to configure FPB to assign the
required block of Functions to the ARI device.

5. Analysis of the Software Implications

Software that intends to work with devices implementing the FPB functionality will be required to
comprehend the new capability. Software that supports FPB will be required to not enable FPB in
topologies where non-compliant devices exist (i.e., those that don’t capture non-0 Device
Numbers). Existing software will continue to function with FPB hardware, but will not be able to
make use of FPB features.

 Page 3

6. Analysis of the C&I Test Implications

New extended capability structure requires the creation of a new test for register field attributes.
New C & I tests would be required if it is desirable to extend C & I coverage to explicitly evaluate
FPB.

As noted above, it would be highly desirable to have PCI-SIG’s C & I testing provide “FYI”
evaluation ASAP of the requirement for non-ARI Functions to capture both Bus and Device
Numbers, to identify non-compliant hardware as soon as possible.

 Page 1

Part II

Detailed Description of the change

Edit as shown in Section 2.2.8.1:

…

Table 2-20: Bridge Mapping for INTx Virtual Wires

Device Number for Device

Requester ID[7:3] from the

Assert_INTx/Deassert_INTx

Message received on

Secondary Side of Bridge

(Interrupt Source[footnote:

The Requester ID of an

Assert_INTx/Deassert_INTx

Message will correspond to

the Transmitter of the

Message on that Link, and not

necessarily to the original

source of the interrupt.])

If ARI Forwarding is enabled,

the value 0 must be used

instead of Requester ID[7:3].

INTx Virtual Wire on

Secondary Side of Bridge

Mapping to INTx Virtual

Wire on Primary Side of

Bridge

0,4,8,12,16,20,24,28

INTA INTA

INTB INTB

INTC INTC

INTD INTD

1,5,9,13,17,21,25,29

INTA INTB

INTB INTC

INTC INTD

INTD INTA

2,6,10,14,18,22,26,30

INTA INTC

INTB INTD

INTC INTA

INTD INTB

3,7,11,15,19,23,27,31

INTA INTD

INTB INTA

INTC INTB

INTD INTC

Note that the Requester ID of an Assert_INTx/Deassert_INTx Message will correspond to the
Transmitter of the Message on that Link, and not necessarily to the original source of the interrupt.

…

 Page 2

[because the following material is all new material, it is not here marked as

red+underline] Insert new section 6.x as follows:

6.x Flattening Portal Bridge (FPB)

6.x.1 Introduction

The Flattening Portal Bridge (FPB) is an optional mechanism which can be used to
improve the scalability and runtime reallocation of Routing IDs and Memory Space
resources.

For non-ARI Functions associated with an Upstream Port, the Routing ID consists of a
3 bit Function Number portion, which is determined by the construction of the Upstream
Port hardware, and a 13 bit Bus Number and Device number portion, determined by the
Downstream Port above the Upstream port.

For ARI Functions associated with an Upstream Port, the Routing ID consists of an 8 bit
Function Number portion, and only the 8 bit Bus Number portion is determined by the
Downstream Port above the Upstream port.

A bridge that implements the FPB capability can itself also be referred to as an FPB. The
FPB capability can be applied to any logical bridge, as illustrated in <Figure 6-x1>.

Figure 6-x1: FPB High Level Diagram and Example Topology

FPB changes the way Bus Numbers are consumed by Switches to reduce waste, by
“flattening” the way Bus Numbers are used inside of Switches and by Downstream Ports
(Figure 6-x1a).

Type 1

Bridge

Function

Primary Side

Secondary Side

Non-FPB Packet

Decode/Routing

Mechanisms

FPB Packet

Decode/Routing

Mechanisms

Bridge

Bridge

Root

Complex

Bridge

Bridge

Switch

Example

showing logical

bridges

supporting FPB

 Page 3

Figure 6-x1a: Example Illustrating “Flattening” of a Switch

FPB defines mechanisms for system software to allocate Routing IDs and Memory Space
resources in non-contiguous ranges, enabling system software to assign pools of these
resources from which it can allocate “bins” to Functions below the FPB. This is done
using a bit vector where each bit when Set assigns a corresponding range of resources to
the Secondary Side of the bridge (see Figure 6-x1b).

Figure 6-x1b: Vector Mechanism for Address Range Decoding

This allows system software to assign Routing IDs and/or Memory Space resources
required by a device hot-add without having to rebalance other, already assigned resource
ranges, and to return to the pool resources freed, for example by a hot remove event.

When enabled,

FPB changes the

Switch internal

structure to remove

the

logical internal bus,

allowing the

Downstream Ports

to directly follow

the Upstream Port

in BDF space

Bridge

Bridge

Switch

Bridge

Bridge

Switch

BDF of each logical

Bridge without FPB

Bus # Dev # Fn #

N 0 0

N+1 0 0

N+1 1 0

N+1 2 0

N+2 0 0

N+3 0 0

N+3 1 0

N+3 2 0

BDF of each logical

Bridge with FPB

Bus # Dev # Fn #

N 0 0

N 0 1

N 0 2

N 0 3

N 1 0

N 1 1

N 1 2

N 1 3

To focus on illustrating “flattening”, this example shows a

possible, but simplistic, enumeration scenario

Vector select applies to

this bit range

(2^N) - 1

2

…

(2^N) - 2

0

11 … 111 000…0 to 111…1

11 … 110 000…0 to 111…1

00 … 010 000…0 to 111…1

00 … 001 000…0 to 111…1

00 … 000 000…0 to 111…1

…

1Each vector

bit matches

a specific

resource

range

subset

Routing ID / Memory Address to be decoded

(Input to decoder circuits)

Subtract Starting Offset

(set by system software in FPB registers)

 Page 4

FPB is defined to allow both the non-FPB and FPB mechanisms to operate
simultaneously, such that, for example, it is possible for system firmware/software to
implement a policy where the non-FPB mechanisms continue to be used in parts of the
system where the FPB mechanisms are not required (see Figure 6-x2). In this figure, the
decode logic is assumed to provide a ‘1’ output when a given TLP is decoded as being
associated with the bridge’s Secondary Side. The non-FPB decode mechanisms apply as
without FPB, so for example only the Bus Number portion (bits 15:8) of a Routing ID is
tested by the non-FPB decode logic when evaluating an ID routed TLP.

Figure 6-x2: Relationship between FPB and non-FPB Decode Mechanisms

It is important to recognize that, although FPB adds additional ways for a specific bridge
to decode a given TLP, FPB does not change anything about the fundamental ways that
bridges operate within the Switch and Root Complex architectural structures. FPB uses
the same architectural concepts to provide management mechanisms for three different
resource types:

1. Routing IDs

2. Memory below 4 GB (“MEM Low”)

3. Memory above 4 GB (“MEM High”)

A hardware implementation of FPB is permitted to support any combination of these
three mechanisms. For each mechanism, FPB uses a bit-vector to indicate, for a specific
subset range of the selected resource type, if resources within that range are associated
with the Primary or Secondary side of the FPB. Hardware implementations are permitted
to implement a small range of sizes for these vectors, and system firmware/software is
enabled to make the most effective use of the available vector by selecting an initial offset
at which the vector is applied, and a granularity for the individual bits within the vector to
indicate the size of the resource range to which the bits in a given vector apply.

Non-FPB Packet

Decode/Routing Mechanisms

FPB Packet

Decode/Routing Mechanisms

TLP To be Decoded

Memory Base/Limit registers

Prefetchable Base/Limit registers

VGA Enable bit

Enhanced Allocation

Secondary/Subordinate

Bus Number registers

For

Memory

Decode

For

Routing ID-

based

Decode

For

Memory

Decode

Logical

OR

Decode Result

Outputs:

0 Primary Side

1 Secondary Side

RID Secondary Start, Vector Start,

Granularity & related registers

RID Vector

MEM Low Vector Start,

Granularity & related registers

MEM Low Vector

MEM High Vector Start,

Granularity & related registers

MEM High Vector

For

Routing ID-

based

Decode

 Page 5

6.x.2 Hardware and Software Requirements

The following rules apply when any of the FPB mechanisms are used:

 If system software violates any of the rules concerning FPB, the hardware behavior is

undefined.

 It is permitted to implement FPB in any PCI bridge (Type 1) Function, and every Function

that implements FPB must implement the FPB Capability (see Section 7.y).

 If a Switch implements FPB then the Upstream Port and all Downstream Ports of the Switch

must implement FPB.

 Software is permitted to enable FPB at some Switch Ports and not others.

 A Root Complex is permitted to implement FPB on some Root Ports but not on others.

 A Type 1 Function is permitted to implement the FPB mechanisms applying to any one, two

or three of these elemental mechanisms:

o Routing IDs (RID)

o Memory below 4 GB (“MEM Low”)

o Memory above 4 GB (“MEM High”)

 System software is permitted to enable any combination (including all or none) of the

elemental mechanisms supported by a specific FPB.

 The error handling and reporting mechanisms, except where explicitly modified in this

section, are unaffected by FPB.

 Following any reset of the FPB Function, the FPB hardware must Clear all bits in all

implemented vectors.

 Once enabled (through the FPB RID Decode Mechanism Enable, FPB MEM Low Decode

Mechanism Enable, and/or FPB MEM High Decode Mechanism Enable bits), if system

software subsequently disables an FPB mechanism, the values of the entries in the associated

vector are undefined, and if system software subsequently re-enables that FPB mechanism the

FPB hardware must Clear all bits in the associated vector.

 If an FPB is implemented with the No_Soft_Reset bit Clear, when that FPB is cycled through

D0D3hotD0, then all FPB mechanisms must be disabled, and the FPB must Clear all bits

in all implemented vectors.

 If an FPB is implemented with the No_Soft_Reset bit Set, when that FPB is cycled through

D0D3hotD0, then all FPB configuration state must not change, and the entries in the

FPB vectors must be retained by hardware.

 Hardware is not required to perform any type of bounds checking on FPB calculations, and

system software must ensure that the FPB parameters are correctly programmed

o It is explicitly permitted for system software to program Vector Start values that

cause the higher order bits of the corresponding vector to surpass the resource range

associated with a given FPB, but in these cases system software must ensure that

those higher order bits of the vector are Clear.

o Examples of errors that system software must avoid include duplication of resource

allocation, combinations of start offsets with set vector bits that could create “wrap-

around” or bounds errors

The following rules apply to the FPB Routing ID (RID) mechanism:

 FPB hardware must consider a specific range of RIDs to be associated with the Secondary

side of the FPB if the Bus Number portion falls within the Bus Number range indicated by

 Page 6

the values programmed in the Secondary and Subordinate Bus Number registers logically

OR’d with the value programmed into the corresponding entry in the FPB RID Vector.

 If it is intended to use only the FPB RID mechanism for BDF decoding, then system

software must ensure that both the Secondary and Subordinate Bus Number registers are 0.

 System software must ensure that the FPB routing mechanisms are configured such that

Configuration Requests targeting Functions Secondary side of the FPB will be routed by the

FPB from the Primary to Secondary side of the FPB.

When ARI is not enabled, The FPB RID mechanism can be applied with different
granularities, programmable by system software through the FPB RID Vector Granularity
field in the FPB RID Vector Control 1 register. Figure 6-x3 illustrates the relationships
between the layout of RIDs and the supported granularities. The reader may find it
helpful to refer to this figure when considering the requirements defined below and in the
definition of the Flattening Portal Bridge (FPB) Capability (see Section <7.y>).

Figure 6-x3: Routing IDs (RIDs) and Supported Granularities

 System software must program the FPB RID Vector Granularity and FPB RID Vector Start

fields in the FPB RID Vector Control 1 register per the constraints described in the

descriptions of those fields.

 For all FPBs other than those associated with Upstream Ports of Switches:

o When ARI Forwarding is not supported, or when the ARI Forwarding Enable bit in

the Device Control 2 register is Clear, FPB hardware must convert a Type 1

Configuration Request received on the Primary side of the FPB to a Type 0

Configuration Request on the Secondary side of the FPB when bits 15:3 of the

Routing ID of the Type 1 Configuration Request matches the value in the RID

Secondary Start field in the FPB RID Vector Control 2 register, and system software

must configure the FPB accordingly.

o When the ARI Forwarding Enable bit in the Device Control 2 register is Set, FPB

hardware must convert a Type 1 Configuration Request received on the Primary side

of the FPB to a Type 0 Configuration Request on the Secondary side of the FPB

when the Bus Number portion of the Routing ID of the Type 1 Configuration

Request matches the value in the Bus Number address (bits 15:8 only) of the

Secondary Start field in the FPB RID Vector Control 2 register, and system software

must configure the FPB accordingly.

Device Num Fn
Bus Number

0237815

Fn8 Routing ID granularity

Fn64 Routing ID granularity

Fn
256 Routing ID

granularity

Fn Num (with ARI)

without

ARI

Fn
256 Routing ID

granularity

with

ARI

BDF

view

with

FPB

 Page 7

 For FPBs associated with Upstream Ports of Switches only, when the FPB RID Decode

Mechanism Enable bit is Set, FPB hardware must use the FPB Num Sec Dev field of the

FPB Capability register to indicate the quantity of Device Numbers associated with the

Secondary Side of the Upstream Port bridge, which must be used by the FPB in addition to

the RID Secondary Start field in the FPB RID Vector Control 2 register to determine when a

Configuration Request received on the Primary side of the FPB targets one of the

Downstream Ports of the Switch, determining in effect when such a Request must be

converted form a Type 1 Configuration Request to a Type 0 Configuration Request, and

system software must configure the FPB appropriately.

o System software configuring FPB must comprehend that the logical internal structure

of a Switch will change depending on the value of the FPB RID Decode Mechanism

Enable bit in the Upstream Port of a Switch.

o Downstream Ports must use their corresponding RID values, and their Requester

IDs and Completer IDs, as determined by the Upstream Port’s FPB Num Sec Dev

and RID Secondary Start values

 FPB’s must implement bridge mapping for INTx virtual wires (see Section <2.2.8.1>)

 Hardware and software must apply this algorithm (or the logical equivalent) to determine

which entry in the FPB RID Vector applies to a given Routing ID (RID) address:

o IF the RID is below the value of FPB RID Vector Start, then the RID is out of range

(below the start) and so cannot be associated with the Secondary side of the bridge,

ELSE

o calculate the offset within the vector by first subtracting the value of FPB RID

Vector Start, then dividing this according to the value of FPB RID Vector

Granularity to determine the bit index within the vector.

o IF the bit index value is greater than the length indicated by FPB RID Vector Size

Supported, then the RID is out of range (beyond the top of the range covered by the

vector) and so cannot be associated with the Secondary side of the bridge, ELSE

o if the bit value within the vector at the calculated bit index location is 1b, THEN the

RID address is associated with the Secondary side of the bridge, ELSE the RID

address is associated with the Primary side of the bridge.

The following rules apply to the FPB MEM Low mechanism:

The FPB MEM Low mechanism can be applied with different granularities,
programmable by system software through the FPB MEM Low Vector Granularity field
in the FPB MEM Low Vector Control register. Figure 6-x4 illustrates the relationships
between the layout of addresses in the memory address space below 4 GB to which the
FPB MEM Low mechanism applies. The reader may find it helpful to refer to this figure
when considering the requirements defined below and in the definition of the Flattening
Portal Bridge (FPB) Capability (see Section <7.y>).

 Page 8

Figure 6-x2: Addresses in Memory Below 4 GB and Effect of Granularity

 System software must program the FPB MEM Low Vector Granularity and FPB MEM Low

Vector Start fields in the FPB MEM Low Vector Control register per the constraints

described in the descriptions of those fields.

 FPB hardware must consider a specific Memory address to be associated with the Secondary

side of the FPB if that Memory address falls within any of the ranges indicated by the values

programmed in other bridge Memory decode registers (enumerated below) logically OR’d

with the value programmed into the corresponding entry in the FPB MEM Low Vector.

Other bridge Memory decode registers include:

o Memory Space Enable bit in the Command register

o Memory Base/Limit registers

o Prefetchable Base/Limit registers

o VGA Enable bit in the Bridge Control register

o Enhanced Allocation (EA) Capability (if supported)

o FPB MEM High mechanism (if supported and enabled)

 Hardware and software must apply this algorithm (or the logical equivalent) to determine

which entry in the FPB MEM Low Vector applies to a given Memory address:

o If the Memory address is below the value of FPB MEM Low Vector Start, then the

Memory address is out of range (below) and so is not associated with the Secondary

side of the bridge by means of this mechanism, else

o calculate the offset within the vector by first subtracting the value of FPB MEM Low

Vector Start, then dividing this according to the value of FPB MEM Low Vector

Granularity to determine the bit index within the vector.

o If the bit index value is greater than the length indicated by FPB MEM Low Vector

Size Supported, then the Memory address is out of range (above) and so is not

associated with the Secondary side of the bridge by means of this mechanism, else

o if the bit value within the vector at the calculated bit index location is 1b, then the

Memory address is associated with the Secondary side of the bridge, else the Memory

address is associated with the Primary side of the bridge.

The following rules apply to the FPB MEM High mechanism:

Address within MBAddress (MB units)

0192031

Address within MB
Address

1 MB Granularity

Address within MB
Address

2 MB Granularity

Address within MB
Address

4 MB Granularity

Address within MB
Address

8 MB Granularity

Address within MB
Address

16 MB Granularity

 Page 9

 System software must program the FPB MEM High Vector Granularity and FPB MEM High

Vector Start Lower fields in the FPB MEM High Vector Control 1 register per the constraints

described in the descriptions of those fields.

 FPB hardware must consider a specific Memory address to be associated with the Secondary

side of the FPB if that Memory address falls within any of the ranges indicated by the values

programmed in other bridge Memory decode registers (enumerated below) logically OR’d

with the value programmed into the corresponding entry in the FPB MEM Low Vector.

Other bridge Memory decode registers include:

o Memory Space Enable bit in the Command register

o Memory Base/Limit registers

o Prefetchable Base/Limit registers

o VGA Enable bit in the Bridge Control register

o Enhanced Allocation (EA) Capability (if supported)

o FPB MEM Low mechanism (if supported and enabled)

 Hardware and software must apply this algorithm to determine which entry in the FPB MEM

High Vector applies to a given Memory address:

o If the Memory address is below the value of FPB MEM High Vector Start, then the

Memory address is out of range (below) and so is not associated with the Secondary

side of the bridge by means of this mechanism, else

o calculate the offset within the vector by first subtracting the value of FPB MEM

High Vector Start, then dividing this according to the value of FPB MEM High

Vector Granularity to determine the bit index within the vector.

o If the bit index value is greater than the length indicated by FPB MEM High Vector

Size Supported, then the Memory address is out of range (above) and so is not

associated with the Secondary side of the bridge by means of this mechanism, else

o if the bit value within the vector at the calculated bit index location is 1b, then the

Memory address is associated with the Secondary side of the bridge, else the Memory

address is associated with the Primary side of the bridge.

 IMPLEMENTATION NOTE

FPB Address Decoding

FPB uses a bit vector mechanism to decode ranges of Routing IDs, and Memory Addresses above
and below 4 GB. A bridge supporting FPB contains the following for each resource type/range
where it supports the use of FPB:

 A Bit vector

 A Start Address

 A Granularity

These are used by the bridge to determine if a given address is part of the range decoded by FPB
as associated with the secondary side of the bridge. An address that is determined not to be
associated with the secondary side of the bridge using either or both of the non-FPB decode
mechanisms and the FPB decode mechanisms is (by default) associated with the primary side of
the bridge. Here, when we use the term “associated” we mean, for example, that the bridge will
apply the following handling to TLPs:

 Associated with Primary, Received at Primary Unsupported Request (UR)

 Associated with Primary, Received at Secondary Forward upstream

 Page 10

 Associated with Secondary, Received at Primary Forward downstream

 Associated with Secondary, Received at Secondary Unsupported Request (UR)

In FPB, every bit in the vector represents a range of resources, where the size of that range is
determined by the selected granularity. If a bit in the vector is Set, it indicates that TLPs addressed
to an address within the corresponding range are to be associated with the secondary side of the
bridge. The specific range of resources each bit represents is dependent on the index of that bit,
and the values in the Start Address & Granularity. The Start Address indicates the lowest address
described by the bit vector. The Granularity indicates the size of the region that is represented by
each bit. Each successive bit in the vector applies to the subsequent range, increasing with each
bit according to the Granularity.

For example, consider a bridge using FPB to describe a MEM Low range. FPB MEM Low Vector
Start has been set to FC0h, indicating that the range described by the bit vector starts at address
FC00 0000h. FPB MEM Low Vector Granularity has been set to 0000b, indicating that each bit
represents a 1 MB range.

From these values we can determine that bit 0 of the vector represents a 1MB range starting at
FC000 0000h (FC00 0000h-FC0F FFFFh), bit 1 represents FC10 0000h-FC1F FFFFh, etc.

Bits in the vector that are set to 0 indicate that the range is not included in the range described by
FPB. In the above example, If bit 0 is Clear, packets addressed to anywhere between FC00 0000h
and FC0F FFFFh should not be routed to the secondary bus of the bridge due to FPB.

 IMPLEMENTATION NOTE

Hardware and Software Considerations for FPB

FPB is intended to address a class of issues with PCI/PCIe architecture that relate to resource
allocation inefficiency. These issues can be categorized as “static” or “dynamic” use case
scenarios, where static use cases refer to scenarios where resources are allocated at system boot
and then typically not changed again, and dynamic use cases refer to scenarios where run-time
resource rebalancing (e.g. allocation of new resources, freeing of resources no longer needed) is
required, due to hot add/remove, or by other needs.

In the Static cases there are limits on the size of hierarchies and number of Endpoints due to the
use of additional Bus Numbers and the lack of use of Device Numbers caused by the PCI/PCIe
architectural definition for Switches and Downstream Ports. FPB addresses this class of problems
by “flattening” the use of Routing IDs (RIDs) so that Switches and Downstream Ports are able to
make more efficient use of the available RIDs.

For the Dynamic cases, without FPB, the “best known method” to avoid rebalancing has been to
reserve large ranges of Bus Numbers and Memory Space in the bridge above the relevant Port or
Endpoint such that hopefully any future needs can be satisfied within the pre-allocated ranges.
This leads to potentially unused allocations, which makes the Routing ID issues worse, and in a
resource constrained platform this approach is difficult to implement, even for relatively simple
cases, where, for example, one might have an add-in card implementing a single Endpoint
replaced by another add-in card that has a Switch and two Endpoints, so that although an initial
allocation of just one Bus would have been sufficient, the initial allocation breaks immediately with
the new add-in card.

For Memory Space the pre-allocation approach is problematic when hot-plugged Endpoints may
require the allocation of Memory Space below 4 GB, which by its nature is a limited resource,
which is quickly used up by pre-allocation of even relatively small amounts, and for which pre-

 Page 11

allocation is unattractive because of the multiple system elements placing demands on system
address space allocation below 4 GB.

FPB includes mechanisms to enable discontinuous resource range allocation/reallocation for both
Requester IDs and Memory Space. The intent is to allow system software the ability to maintain
resource “pools” which can be allocated (and freed back to) at run-time, without disrupting other
operations in progress as is required with rebalancing.

To support the run time use of FPB by system software, FPB hardware implementations should
avoid introducing stalls or other types of disruptions to transactions in flight, including during the
times that system software is modifying the state of the FPB hardware. It is not, however,
expected that hardware will attempt to identify cases where system software erroneously modifies
the FPB configuration in a way that does affect transactions in flight. Just as with the non-FPB
mechanisms, it is the responsibility of system software to ensure that system operation is not
corrupted due to a reconfiguration operation.

It is not explicitly required that system firmware/software perform the enabling and/or disabling of
FPB mechanisms in a particular sequence, however care should be taken to implement resource
allocation operations in a hierarchy such that the hardware and software elements of the system
are not corrupted or caused to fail.

 Page 12

Edit as shown:

6.12.1.1 ACS Downstream Ports

This section applies to Root Ports and Downstream Switch Ports that implement an ACS

Extended Capability structure. This section applies to Downstream Port Functions both for

single-Function devices and multi-Function devices.

When enabled, the Downstream Port tests the Bus Number from the Requester ID

of each Upstream Request received by the Port to determine if it is associated with

the Secondary side of the virtual bridge associated with the Downstream Port, by

either or both of:

o Determining that the Requester ID falls within the Bus Number “aperture”

of the Port – the inclusive range specified by the Secondary Bus Number

register and the Subordinate Bus Number register

o If FPB is implemented and enabled, determining that the Requester ID is

associated with the bridge’s Secondary Side by the application of the FPB

Routing ID mechanism.

If the Bus Number from the Requester ID of the Request is not within this

aperture, this is a reported error (ACS Violation) associated with the Receiving

Port (see Section 6.12.4.)

…

Edit the sections that follow as shown:

7.1 Configuration Topology

…

A PCI Express Switch not using FPB Routing ID mechanisms is represented by multiple

PCI-PCI Bridge structures connecting PCI Express Links to an internal logical PCI bus

(see Figure 7-2).

…

7.3 Configuration Transaction Rules

7.3.1 Device Number

…

Except when FPB Routing ID mechanisms are used (see Section <6.x>), Downstream

Ports that do not have ARI Forwarding enabled must associate only Device 0 with the

 Page 13

device attached to the Logical Bus representing the Link from the Port. Configuration

Requests targeting the Bus Number associated with a Link specifying Device Number 0

are delivered to the device attached to the Link; Configuration Requests specifying all

other Device Numbers (1-31) must be terminated by the Switch Downstream Port or the

Root Port with an Unsupported Request Completion Status (equivalent to Master Abort in

PCI).

[[add paragraph break here]] Non-ARI Devices must not assume that Device Number 0

is associated with their Upstream Port, but must capture their assigned Device Number as

discussed in Section 2.2.6.2. Non-ARI Devices must respond to all Type 0 Configuration

Read Requests, regardless of the Device Number specified in the Request.

Switches, and components wishing to incorporate more than eight Functions at their

Upstream Port, are permitted to implement one or more “virtual switches” represented by

multiple Type 1 (PCI-PCI bridge) Configuration Space headers as illustrated in Figure 7-

2. These virtual switches serve to allow fan-out beyond eight Functions. FPB provides a

“flattening” mechanism that, when enabled, causes the virtual bridges of the Downstream

Ports to appear in configuration space at RID addresses following the RID of the

Upstream Port (see 6.x).

…

7.3.2 Configuration Transaction Addressing

…

– Device Number association is discussed in Section 7.3.1, and in

Section 6.x. When an ARI Device is targeted and the Downstream Port immediately above

it is enabled for ARI Forwarding, the Device Number is implied to be 0, and the

traditional Device Number part of the Routing ID is used instead as part of an 8-bit

Function Number field. See Section 6.13.

…

7.3.3 Configuration Request Routing Rules

…

Number and Device Number fields:

o If in the case of a PCI Express-PCI bridge, equal to the Bus Number assigned to

secondary PCI bus or, in the case of a Switch or Root Complex, equal to the Bus

Number and decoded Device Numbers assigned to one of the Root (Root

Complex) or Downstream Ports (Switch), or if required based on the FPB Routing

ID mechanism,

field of the Request (see Table 2-3) – all other fields of the Request remain

unchanged

a PCI Express-PCI bridge)

o If not equal to the Bus Number of any of Downstream Ports or secondary PCI

bus, but in the range of Bus Numbers assigned to either a Downstream Port or a

 Page 14

secondary PCI bus, or if required based on the FPB Routing ID mechanism,

that Downstream Port interface without

modification

o Else (none of the above)

– follow the rules for handling Unsupported

Requests

[Since the following material is all new material, it is not here marked as red+underline]

Insert new section 7.y following Enhanced Allocation and ahead of PCI Express

Capability Structure:

7.y Flattening Portal Bridge (FPB) Capability

The Flattening Portal Bridge (FPB) Capability is an optional Capability that is required for
any bridge Function that implements FPB. The FPB Capability structure is shown in
Figure 7-y0.

Figure 7-y0: FPB Capability Header

If a Switch implements FPB then each of its Ports of the Switch must implement an FPB
Capability Structure. A Root Complex is permitted to implement the FPB Capability
Structure on some or on all of its Root Ports. A Root Complex is permitted to
implement the FPB Capability for internal logical busses.

7.y.1 FPB Capability Header (Offset 00h)

RsvdP Capability ID

07831 1516

Next Pointer

Byte

Offset

00h

FPB Capabilities Register 04h

FPB RID Vector Control 1 Register 08h

FPB RID Vector Control 2 Register 0Ch

FPB MEM Low Vector Control Register 10h

FPB MEM High Vector Control 1 Register 14h

FPB MEM High Vector Control 2 Register 18h

FPB Vector Access Control Register 1Ch

FPB Vector Access Data Register 20h

 Page 15

Figure 7-y1: FPB Capability Header

Table 7-y1: FPB Capability Header

Bit
Location

Register Description Attributes

7:0 Capability ID – Must be set to 15h RO

15:8 Next Pointer - Pointer to the next item in the capabilities
list. Must be 00h for the final item in the list.

RO

31:16 Reserved RsvdP

7.y.2 FPB Capabilities Register (Offset 04h)

Figure 7-y2 details allocation of register fields for FPB Capability register and Table 7-y2
describes the requirements for this register.

Figure 7-y2: FPB Capabilities Register

Table 7-y2: FPB Capabilities Register

Bit
Location

Register Description Attributes

0 FPB RID Decode Mechanism Supported – If Set,
indicates that the FPB RID Vector mechanism is
supported.

HwInit

1 FPB MEM Low Decode Mechanism Supported - If
Set, indicates that the FPB MEM Low Vector mechanism
is supported.

HwInit

2 FPB MEM High Decode Mechanism Supported - If
Set, indicates that the FPB Mem High mechanism is
supported.

HwInit

RsvdP Capability ID

07831 1516

Next Pointer

RsvdP

07831 1516 10

RsvdP

FPB RID Decode Mechanism Supported

FPB MEM Low Decode Mechanism Supported

FPB MEM High Decode Mechanism Supported

FPB Num Sec Dev

FPB RID Vector Size Supported

3 2 1181923

FPB MEM Low Vector Size Supported

FPB MEM High Vector Size Supported

RsvdP

242627 11

 Page 16

7:3 FPB Num Sec Dev - For Upstream Ports of Switches
only, this field indicates the quantity of Device Numbers
associated with the Secondary Side of the Upstream
Port bridge. The quantity is determined by adding one
to the numerical value of this field.

Although it is recommended that Switch implementations
assign Downstream Ports using all 8 allowed Functions
per allocated Device Number, such that all Downstream
Ports are assigned within a contiguous range of Device
and Function Numbers, it is, however, explicitly
permitted to assign Downstream Ports to Function
Numbers that are not contiguous within the indicated
range of Device Numbers, and system software is
required to scan for Switch Downstream Ports at every
Function Number within the indicated quantity of Device
Numbers associated with the Secondary Side of the
Upstream Port.

This field is Reserved for Downstream Ports.

HwInit/RsvdP

10:8 FPB RID Vector Size Supported – Indicates the size of
the FPB RID Vector implemented in hardware, and
constrains the allowed values software is permitted to
write to the FPB RID Vector Granularity field.

Defined encodings are:

 Value Size Allowed
 Granularities
 in RID units

 000b 256 bits 8, 64, 256

 010b 1 K bits 8, 64

 101b 8 K bits 8

 All other encodings are Reserved.

If the FPB RID Decode Mechanism Supported bit is
Clear, then the value in this field is undefined and must
be ignored by software.

HwInit

15:11 Reserved RsvdP

 Page 17

18:16 FPB MEM Low Vector Size Supported – Indicates the
size of the FPB MEM Low Vector implemented in
hardware, and constrains the allowed values software is
permitted to write to the FPB MEM Low Vector Start
field.

Defined encodings are:

 Value Size Allowed
 Granularities
 in MB units

 000b 256 bits 1, 2, 4, 8, 16

 001b 512 bits 1, 2, 4, 8

 010b 1 K bits 1, 2, 4

 011b 2 K bits 1, 2

 100b 4 K bits 1

 All other encodings are Reserved.

If the FPB MEM Low Decode Mechanism Supported bit
is Clear, then the value in this field is undefined and
must be ignored by software.

HwInit

23:19 Reserved RsvdP

26:24 FPB MEM High Vector Size Supported – Indicates the
size of the FPB MEM High Vector implemented in
hardware.

Defined encodings are:

 000b 256 bits

 001b 512 bits

 010b 1 K bits

 011b 2 K bits

 100b 4 K bits

 101b 8 K bits

 All other encodings are Reserved.

All defined Granularities are allowed for all defined
vector sizes.

If the FPB MEM High Decode Mechanism Supported bit
is Clear, then the value in this field is undefined and
must be ignored by software.

HwInit

31:27 Reserved RsvdP

7.y.3 FPB RID Vector Control 1 Register (Offset

08h)

Figure 7-y3 details allocation of register fields for FPB RID Control 1 register and Table
7-y3 describes the requirements for this register.

 Page 18

Figure 7-y3: FPB RID Vector Control 1 Register

Table 7-y3: FPB RID Vector Control 1 Register

Bit
Location

Register Description Attributes

0 FPB RID Decode Mechanism Enable – When Set,
enables the FPB RID Decode mechanism

If the FPB RID Decode Mechanism Supported bit is Clear,
then it is permitted for hardware to implement this bit as
RO, and in this case the value in this field is undefined.

Default value of this bit is 0b.

RW/RO

3:1 Reserved RsvdP

7:4 FPB RID Vector Granularity – The value written by
software to this field controls the granularity of the FPB
RID Vector and the required alignment of the FPB RID
Vector Start field (below).

Defined encodings are:

 Value Granularity

 0000b 8 RIDs

 0011b 64 RIDs

 0101b 256 RIDs

 All other encodings are Reserved.

Based on the implemented FPB RID Vector size,
hardware is permitted to implement as RW only those bits
of this field that can be programmed to non-zero values, in
which case the upper order bits are permitted but not
required to be hardwired to 0.

If the FPB RID Decode Mechanism Supported bit is Clear,
then it is permitted for hardware to implement this field as
RO, and the value in this field is undefined.

For Downstream Ports, if the ARI Forwarding Enable bit in
the Device Control 2 Register and the FPB RID Decode
Mechanism Enable bit are Set, then software must
program 0101b into this field, if this field is programmable.

Default value for this field is 0000b.

RW/RO

18:8 Reserved RsvdP

07831

RsvdPRsvdP

FPB RID Decode Mechanism Enable

FPB RID Vector Granularity

3 11819

FPB RID Vector Start

4

 Page 19

31:19 FPB RID Vector Start – The value written by software to
this field controls the offset at which the FPB RID Vector is
applied.

The value represents a RID offset in units of 8 RIDs, such
that bit 0 of the FPB RID Vector represents the range of
RIDs starting from the value represented in this register up
to that value plus the FPB RID Vector Granularity minus 1,
and bit 1 represents range from this register value plus
granularity up to that value plus FPB RID Vector
Granularity minus 1, etc.

Software must program this field to a value that is
naturally aligned (meaning the lower order bits must be
0’s) according to the value in the FPB RID Vector
Granularity Field as indicated here:

FPB RID Vector Granularity Start Alignment Constraint

 0000b <no constraint>

 0011b …00 0b

 0101b …0000 0b

 All other encodings are Reserved.

If this requirement is violated, the hardware behavior is
undefined.

For Downstream Ports, if the ARI Forwarding Enable bit in
the Device Control 2 Register and the FPB RID Decode
Mechanism Enable bit are Set, then software must
program bits 23:19 of this field to a value of 0000 0b, and
the hardware behavior is undefined if any other value is
programmed.

If the FPB RID Decode Mechanism Supported bit is Clear,
then it is permitted for hardware to implement this field as
RO, and the value in this field is undefined.

Default value for this field is 0000 0000 0000 0b.

RW/RO

7.y.4 FPB RID Vector Control 2 Register (Offset

0Ch)

Figure 7-y4 details allocation of register fields for FPB RID Vector Control 2 register and
Table 7-y4 describes the requirements for this register

Figure 7-y4: FPB RID Vector Control 2 Register

031

RsvdPRsvdP

RID Secondary Start

3 21516

 Page 20

Table 7-y4: FPB RID Vector Control 2 Register

Bit
Location

Register Description Attributes

2:0 Reserved RsvdP

15:3 RID Secondary Start – The value written by software to
this field controls the RID offset at which Type 1
Configuration Requests passing downstream through the
bridge must be converted to Type 0.

Bits[2:0] of the RID offset are fixed by hardware as 000b
and cannot be modified.

For Downstream Ports, if the ARI Forwarding Enable bit in
the Device Control 2 register is Set, then software must
write bits 7:3 of this field to 0 0000b.

If the FPB RID Decode Mechanism Supported bit is Clear,
then it is permitted for hardware to implement this field as
RO, and the value in this field is undefined.

Default value for this field is 0000 0000 0000 0b.

RW/RO

31:16 Reserved RsvdP

7.y.5 FPB MEM Low Vector Control Register

(Offset 10h)

Figure 7-y5 details allocation of register fields for FPB MEM Low Vector Control register
and Table 7-y5 describes the requirements for this register.

 Figure 7-y5: FPB MEM Low Vector Control Register

Table 7-y5: FPB MEM Low Vector Control Register

Bit
Location

Register Description Attributes

0 FPB MEM Low Decode Mechanism Enable - When Set,
enables the FPB MEM Low Decode mechanism.

If the FPB MEM Low Decode Mechanism Supported bit is
Clear, then it is permitted for hardware to implement this
bit as RO, and in this case the value in this field is
undefined.

Default value of this bit is 0b.

RW/RO

3:1 Reserved RsvdP

RsvdP

07831 4

RsvdP

FPB MEM Low Mechanism Enable

FPB MEM Low Vector Granularity

31920

FPB MEM Low Vector Start

 Page 21

7:4 FPB MEM Low Vector Granularity – The value written by
software to this field controls the granularity of the FPB
MEM Low Vector, and the required alignment of the FPB
MEM Low Vector Start field (below).

Defined encodings are:

 Value Granularity

 0000b 1 MB

 0001b 2 MB

 0010b 4 MB

 0011b 8 MB

 0100b 16 MB

 All other encodings are Reserved.

Based on the implemented FPB MEM Low Vector size,
hardware is permitted to implement as RW only those bits
of this field that can be programmed to non-zero values, in
which case the upper order bits are permitted but not
required to be hardwired to 0.

If the FPB MEM Low Decode Mechanism Supported bit is
Clear, then it is permitted for hardware to implement this
field as RO, and the value in this field is undefined.

Default value for this field is 0000b.

RW/RO

19:8 Reserved RsvdP

31:20 FPB MEM Low Vector Start – The value written by
software to this field sets bits 31:20 of the base address at
which the FPB MEM Low Vector is applied.

Software must program this field to a value that is
naturally aligned (meaning the lower order bits must be
0’s) according to the value in the FPB MEM Low Vector
Granularity field as indicated here:

 FPB MEM Low Vector Granularity Constraint

 0000b <no constraint>

 0001b …0b

 0010b …00b

 0011b …000b

 0100b …0000b

If this requirement is violated, the hardware behavior is
undefined.

If the FPB MEM Low Decode Mechanism Supported bit is
Clear, then it is permitted for hardware to implement this
field as RO, and the value in this field is undefined.

Default value for this field is 000h.

RW/RO

7.y.6 FPB MEM High Vector Control 1 Register

 Page 22

(Offset 14h)

Figure 7-y6 details allocation of register fields for FPB MEM High Vector Control 1
register and Table 7-y6 describes the requirements for this register.

Figure 7-y6: FPB MEM High Vector Control 1 Register

Table 7-y6: FPB MEM High Vector Control 1 Register

Bit
Location

Register Description Attributes

0 FPB MEM High Decode Mechanism Enable - When Set,
enables the FPB MEM High Decode mechanism.

If the FPB MEM High Decode Mechanism Supported bit is
Clear, then it is permitted for hardware to implement this
bit as RO, and in this case the value in this field is
undefined.

Default value of this bit is 0b.

RW/RO

3:1 Reserved RsvdP

RsvdP

07831 4

RsvdP

FPB Mem High Mechanism Enable

FPB MEM High Vector Granularity

32728

FPB MEM High Vector Start Lower

 Page 23

7:4 FPB MEM High Vector Granularity – The value written
by software to this field controls the granularity of the FPB
MEM High Vector, and the required alignment of the FPB
MEM High Vector Start Lower field (below).

Software is permitted to select any allowed Granularity
from the table below regardless of the value in the FPB
MEM High Vector Size Supported field.

Defined encodings are:

 Value Granularity

 0000b 256 MB

 0001b 512 MB

 0010b 1 GB

 0011b 2 GB

 0100b 4 GB

 0101b 8 GB

 0110b 16 GB

 0111b 32 GB

All other encodings are Reserved.

Based on the implemented FPB MEM High Vector size,
hardware is permitted to implement as RW only those bits
of this field that can be programmed to non-zero values, in
which case the upper order bits are permitted but not
required to be hardwired to 0.

If the FPB MEM High Decode Mechanism Supported bit is
Clear, then it is permitted for hardware to implement this
field as RO, and the value in this field is undefined.

Default value for this field is 0000b.

RW/RO

27:8 Reserved RsvdP

 Page 24

31:28 FPB MEM High Vector Start Lower – The value written
by software to this field sets the lower bits of the base
address at which the FPB MEM High Vector is applied.

Software must program this field to a value that is
naturally aligned (meaning the lower order bits must be
0’s) according to the value in the FPB MEM High Vector
Granularity Field as indicated here:

 FPB MEM High Vector Granularity Constraint

 0000b <no constraint>

 0001b …0b

 0010b …00b

 0011b …000b

 0100b …0000b

 0101b …0 0000b

 0110b …00 0000b

 0111b …000 0000b

If this requirement is violated, the hardware behavior is
undefined.

If the FPB MEM High Decode Mechanism Supported bit is
Clear, then it is permitted for hardware to implement this
field as RO, and the value in this field is undefined.

Default value for this field is 0h.

RW/RO

7.y.7 FPB MEM High Vector Control 2 Register

(Offset 18h)

Figure 7-y7 details allocation of register fields for FPB MEM High Vector Control 2
register and Table 7-y7 describes the requirements for this register.

Figure 7-y7: FPB MEM High Vector Control 2 Register

Table 7-y7: FPB MEM High Vector Control 2 Register

Bit
Location

Register Description Attributes

031

FPB MEM High Vector Start Upper

 Page 25

31:0 FPB MEM High Vector Start Upper – The value written
by software to this field sets bits 63:32 of the base
address at which the FPB MEM High Vector is applied.

Software must program this field to a value that is
naturally aligned (meaning the lower order bits must be
0’s) according to the value in the FPB MEM High Vector
Granularity Field as indicated here:

 FPB MEM High
 Vector Granularity Constraint

 0000b <no constraint>

 0001b <no constraint>

 0010b <no constraint>

 0011b <no constraint>

 0100b <no constraint>

 0101b …0b

 0110b …00b

 0111b …000b

If this requirement is violated, the hardware behavior is
undefined

If the FPB MEM High Decode Mechanism Supported bit is
Clear, then it is permitted for hardware to implement this
field as RO, and the value in this field is undefined.

Default value for this field is 0000 0000h.

RW/RO

7.y.8 FPB Vector Access Control Register (Offset

1Ch)

Figure 7-y8 details allocation of register fields for FPB Vector Access Control register and
Table 7-y8 describes the requirements for this register.

Figure 7-y8: FPB Vector Access Control Register

Table 7-y8: FPB Vector Access Control Register

Bit
Location

Register Description Attributes

RsvdP

07831

RsvdP

FPB Vector Access OffsetFPB Vector Select

13141516

 Page 26

7:0 FPB Vector Access Offset – The value in this field
indicates the offset of the DWORD portion of the FPB RID,
MEM Low or MEM High, Vector that can be read or written
by means of the FPB Vector Access Data register.

The selection of RID, MEM Low or MEM High is made by
the value written to the FPB Vector Select field.

The bits of this field map to the offset according to the
value in the corresponding FPB RID, MEM Low, or MEM
High Vector Size Supported field as shown here:

 Vector Size
 Supported Offset Bits Vector Access Offset

 000b 2:0 2:0 (7:3 unused)

 001b 3:0 3:0 (7:4 unused)

 010b 4:0 4:0 (7:5 unused)

 011b 5:0 5:0 (7:6 unused)

 100b 6:0 6:0 (7 unused)

 101b 7:0 7:0

 All other encodings are Reserved.

Bits in this field that are unused per the table above must
be written by software as 0b, and are permitted but not
required to be implemented as RO.

Default value for this field is 00h

RW/RO

13:8 Reserved RsvdP

15:14 FPB Vector Select – The value written to this field selects
the Vector to be accessed at the indicated FPB Vector
Access Offset. Software must only write this field with
values that correspond to supported FPB mechanisms,
otherwise the results are undefined.

Defined encodings are:

 00b: RID

 01b: MEM Low

 10b: MEM High

 11b: Reserved

Default value for this field is 00b

RW

31:16 Reserved RsvdP

7.y.9 FPB Vector Access Data Register (Offset

20h)

Figure 7-y9 details allocation of register fields for FPB Vector Access Data register and
Table 7-y9 describes the requirements for this register.

 Page 27

Figure 7-y9: FPB Vector Access Data Register

Table 7-y9: FPB Vector Access Data Register

Bit
Location

Register Description Attributes

31:0 FPB Vector Access Data – Reads from this register
return the DW of data from the FPB Vector at the location
determined by the value in the FPB Vector Access Offset
Register. Writes to this register replace the DW of data
from the FPB Vector at the location determined by the
value in the FPB Vector Access Offset Register.

Behavior of this field is undefined if software programs
unsupported values for FPB Vector Select or FPB Vector
Access Offset fields, however hardware is required to
complete the access to this register normally.

Default value for this field is 0000 0000h

RW

<end>

031

FPB Vector Access Data

